'mhlo' Dialek

Operasi

mhlo.abs (mhlo::AbsOp)

Operasi ABS

Sintaksis:

operation ::= `mhlo.abs` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi absans elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs

Contoh:

%result = mhlo.abs %operand : tensor<3xi32>

Sifat: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand Tensor berperingkat dari bilangan bulat tanpa tanda 2/4/8/16/32/64-bit atau float 4/6/8/16/32/64-bit atau tipe kompleks dengan elemen float 32/64-bit atau bilangan bulat bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam 2/4/8/16/32-bit atau nilai bilangan bulat tak bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit

Hasil:

Hasil Keterangan
result tensor berperingkat dari bilangan bulat tanpa tanda 2/4/8/16/32/64-bit atau float 4/6/8/16/32/64-bit atau bilangan bulat bertanda terkuantisasi seragam 2/4/8/16/32-bit atau bilangan bulat bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit atau bilangan bulat tak bertanda terkuantisasi seragam 2/4/8/16/32-bit atau nilai bilangan bulat tak bertanda terkuantisasi seragam per sumbu 2/4/8/16/32-bit

mhlo.acos (mhlo::AcosOp)

Operasi Acos

Sintaksis:

operation ::= `mhlo.acos` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi acos elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Contoh:

%result = mhlo.acos %operand : tensor<2x2xf32>

Ciri-ciri: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

Hasil:

Hasil Keterangan
result tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

mhlo.acosh (mhlo::AcoshOp)

Operasi Acosh

Sintaksis:

operation ::= `mhlo.acosh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi acosh elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Contoh:

%result = mhlo.acosh %operand : tensor<2x2xf32>

Ciri-ciri: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

Hasil:

Hasil Keterangan
result tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

mhlo.add (mhlo::AddOp)

Tambahkan operasi

Sintaksis:

operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Melakukan penjumlahan elemen demi elemen dari dua tensor lhs dan rhs dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add

Contoh:

%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>

Sifat: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.
rhs Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.add_dependency (mhlo::AddDependencyOp)

Operasi AddDependency

Sintaksis:

operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)

Operasi ini bersifat eksklusif untuk kompiler XLA, sehingga belum memiliki spesifikasi.

Secara informal, operasi ini memiliki dua operan: operan data dan token. Output dari operasi ini adalah operan data. Ketika digunakan dengan AfterAll, operasi ini memungkinkan pengurutan operasi yang tidak menimbulkan efek samping (operasi yang tidak menghasilkan nilai token).

Contoh:

%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>

Ciri-ciri: AlwaysSpeculatableImplTrait

Antarmuka: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand tensor berperingkat dari float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor berperingkat dari nilai terkuantisasi integer per-sumbu atau token atau token stablehlo
token token atau token stablehlo

Hasil:

Hasil Keterangan
output tensor berperingkat dari float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor berperingkat dari nilai terkuantisasi integer per-sumbu atau token atau token stablehlo

mhlo.after_all (mhlo::AfterAllOp)

Setelah semua operasi

Sintaksis:

operation ::= `mhlo.after_all` $inputs attr-dict
              `:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))

Memastikan bahwa operasi yang menghasilkan inputs dieksekusi sebelum operasi apa pun yang bergantung pada result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Contoh:

%result = mhlo.after_all %input0, %input1 : !mhlo.token

Ciri-ciri: AlwaysSpeculatableImplTrait

Antarmuka: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
inputs variadik dari token

Hasil:

Hasil Keterangan
result token

mhlo.all_gather (mhlo::AllGatherOp)

Operasi AllGather

Di dalam setiap grup proses dalam grid proses, nilai tensor operan dari setiap proses di sepanjang all_gather_dim digabungkan dan menghasilkan tensor hasil. computation diterapkan secara terpisah untuk setiap operan dalam operands , menghasilkan satu hasil per operan.

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather

Contoh:

%result = "mhlo.all_gather"(%operand) {
  all_gather_dim = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
  // use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>

Sifat: SameOperandsAndResultElementType

Atribut:

Atribut Tipe MLIR Keterangan
all_gather_dim ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.
replica_groups ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit
channel_handle ::mlir::mhlo::ChannelHandleAttr dua bilangan bulat 64-bit 'handle' dan 'type'
use_global_device_ids ::mlir::UnitAttr atribut unit

Operan:

Operan Keterangan
operands Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.all_reduce (mhlo::AllReduceOp)

Operasi AllReduce

Dalam setiap grup proses di grid proses, fungsi reduksi computation pada nilai tensor operan dari setiap proses dan menghasilkan tensor hasil. computation diterapkan secara terpisah untuk setiap operan dalam operands , menghasilkan satu hasil per operan.

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Contoh:

%result = "mhlo.all_reduce"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
    %0 = mhlo.add %arg1, %arg2 : tensor<f32>
    mhlo.return %0 : tensor<f32>
}) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>

Traits: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut Tipe MLIR Keterangan
replica_groups ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit
channel_handle ::mlir::mhlo::ChannelHandleAttr dua bilangan bulat 64-bit 'handle' dan 'type'
use_global_device_ids ::mlir::UnitAttr atribut unit

Operan:

Operan Keterangan
operands Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.all_to_all (mhlo::AllToAllOp)

Operasi AllToAll

Di dalam setiap grup proses dalam grid proses, nilai tensor operand dibagi sepanjang split_dimension menjadi beberapa bagian, bagian-bagian yang terbagi tersebut disebar di antara proses-proses, bagian-bagian yang tersebar tersebut digabungkan sepanjang concat_dimension , dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all

Contoh:

%result = "mhlo.all_to_all"(%operand) {
  split_dimension = 1 : i64,
  concat_dimension = 0 : i64,
  split_count = 2 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
split_dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.
concat_dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.
split_count ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit yang nilainya positif.
replica_groups ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit
channel_handle ::mlir::mhlo::ChannelHandleAttr dua bilangan bulat 64-bit 'handle' dan 'type'

Operan:

Operan Keterangan
operand Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Variadik tensor berperingkat tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.and (mhlo::AndOp)

Dan operasi

Sintaksis:

operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Melakukan operasi AND elemen demi elemen pada dua tensor lhs dan rhs dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and

Contoh:

%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>

Sifat: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs Tensor berperingkat yang berisi nilai boolean atau bilangan bulat 2/4/8/16/32/64-bit.
rhs Tensor berperingkat yang berisi nilai boolean atau bilangan bulat 2/4/8/16/32/64-bit.

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.asin (mhlo::AsinOp)

Operasi asin

Sintaksis:

operation ::= `mhlo.asin` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi asin elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Contoh:

%result = mhlo.asin %operand : tensor<2x2xf32>

Ciri-ciri: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

Hasil:

Hasil Keterangan
result tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

mhlo.asinh (mhlo::AsinhOp)

Operasi Asinh

Sintaksis:

operation ::= `mhlo.asinh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi asinh elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Contoh:

%result = mhlo.asinh %operand : tensor<2x2xf32>

Ciri-ciri: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

Hasil:

Hasil Keterangan
result tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

mhlo.async_done (mhlo::AsyncDoneOp)

Operasi AsyncDone

Operasi ini bersifat eksklusif untuk kompiler XLA, sehingga belum memiliki spesifikasi.

Secara informal, operasi ini akan memblokir hingga akhir komputasi asinkron. Operasi ini mengembalikan hasil akhir dari komputasi asinkron tersebut.

Lihat dokumentasi AsyncStart untuk informasi lebih lanjut.

Antarmuka: InferTypeOpInterface

Operan:

Operan Keterangan
bundle async_bundle dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau nilai token atau token stablehlo.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» variadik tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau token atau token stablehlo atau tuple bersarang dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau memref float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau tensor berperingkat nilai integer terkuantisasi per-sumbu atau nilai token

mhlo.async_start (mhlo::AsyncStartOp)

Operasi AsyncStart

Operasi ini bersifat eksklusif untuk kompiler XLA, sehingga belum memiliki spesifikasi.

Secara informal, operasi ini memulai komputasi asinkron.

Ini digunakan ketika terdapat fungsi yang berisi penantian asinkron (seperti DMA) dan komputasi pada thread. Misalnya, sebuah fungsi mungkin terdiri dari komputasi, DMA, komputasi lain, DMA kedua, dan komputasi terakhir. Ini akan direpresentasikan sebagai async_start diikuti oleh async_update dan async_done. async_start akan melakukan komputasi pertama pada thread dan kemudian memulai DMA. async_update akan menunggu DMA selesai jika belum selesai, kemudian mengeksekusi komputasi kedua dalam fungsi, dan memulai DMA kedua. Terakhir, async_done akan menunggu DMA terakhir ini, dan kemudian menjalankan komputasi terakhir yang perlu dijalankan pada thread dan mengembalikan hasil dari komputasi terakhir tersebut.

operands diteruskan langsung ke komputasi. called_computation adalah fungsi yang akan dijalankan secara asinkron. execution_thread adalah nama thread tempat komputasi akan dijalankan. Thread utama disebut "main". Semua thread memiliki nama.

Ini mengembalikan semua status yang dibutuhkan di antara operasi asinkron. Setelah penugasan buffer, nilai yang dikembalikan mewakili ruang yang dibutuhkan untuk menampung input, hasil, dan setiap catatan sementara yang dibutuhkan atau diedit oleh operasi asinkron.

Atribut:

Atribut Tipe MLIR Keterangan
called_computation ::mlir::FlatSymbolRefAttr atribut referensi simbol datar
execution_thread ::mlir::StringAttr atribut string

Operan:

Operan Keterangan
inputs variadik tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau token atau token stablehlo atau tuple bersarang dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau memref float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau tensor berperingkat nilai integer terkuantisasi per-sumbu atau nilai token

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» async_bundle dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau nilai token atau token stablehlo.

mhlo.async_update (mhlo::AsyncUpdateOp)

Operasi AsyncUpdate

Operasi ini bersifat eksklusif untuk kompiler XLA, sehingga belum memiliki spesifikasi.

Secara informal, operasi ini memblokir komputasi asinkron hingga penghalang sinkronisasi. Ini mengembalikan bundle setelah melakukan operasi padanya.

Lihat dokumentasi AsyncStart untuk informasi lebih lanjut.

Antarmuka: InferTypeOpInterface

Operan:

Operan Keterangan
bundle async_bundle dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau nilai token atau token stablehlo.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» async_bundle dengan kombinasi apa pun dari tensor berperingkat float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu atau nilai token atau token stablehlo.

mhlo.atan2 (mhlo::Atan2Op)

Operasi Atan2

Sintaksis:

operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Melakukan operasi atan2 elemen demi elemen pada tensor lhs dan rhs dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2

Contoh:

%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor.
rhs Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor.

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor.

mhlo.atanh (mhlo::AtanhOp)

Operasi Atanh

Sintaksis:

operation ::= `mhlo.atanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi atanh elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Contoh:

%result = mhlo.atanh %operand : tensor<2x2xf32>

Ciri-ciri: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

Hasil:

Hasil Keterangan
result tensor tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit

mhlo.batch_norm_grad (mhlo::BatchNormGradOp)

Operasi BatchNormGrad

Menghitung gradien dari beberapa input BatchNormTrainingOp yang melakukan backpropagasi dari grad_output , dan menghasilkan tensor grad_operand , grad_scale dan grad_offset .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad

Contoh:

%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
    tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Sifat: AlwaysSpeculatableImplTrait , InferTensorType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
epsilon ::mlir::Atribut Mengambang Atribut float 32-bit
feature_index ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
operand tensor berperingkat dari nilai float 4/6/8/16/32/64-bit
scale Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
mean Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
variance Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
grad_output tensor berperingkat dari nilai float 4/6/8/16/32/64-bit

Hasil:

Hasil Keterangan
grad_operand tensor berperingkat dari nilai float 4/6/8/16/32/64-bit
grad_scale Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
grad_offset Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.

mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)

Operasi BatchNormInference

Menormalisasi tensor operand di semua dimensi kecuali dimensi feature_index dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference

Contoh:

%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>

Sifat: AlwaysSpeculatableImplTrait , InferTensorType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
epsilon ::mlir::Atribut Mengambang Atribut float 32-bit
feature_index ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
operand tensor berperingkat dari nilai float 4/6/8/16/32/64-bit
scale Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
offset Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
mean Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
variance Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.

Hasil:

Hasil Keterangan
result tensor berperingkat dari nilai float 4/6/8/16/32/64-bit

mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)

Operasi Pelatihan Norma Batch

Menghitung rata-rata dan varians di seluruh dimensi batch dan spasial serta menormalisasi tensor operand , untuk setiap fitur dalam dimensi feature_index dan menghasilkan output tensor batch_mean dan batch_var .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training

Contoh:

%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

Sifat: AlwaysSpeculatableImplTrait , InferTensorType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
epsilon ::mlir::Atribut Mengambang Atribut float 32-bit
feature_index ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
operand tensor berperingkat dari nilai float 4/6/8/16/32/64-bit
scale Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
offset Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.

Hasil:

Hasil Keterangan
output tensor berperingkat dari nilai float 4/6/8/16/32/64-bit
batch_mean Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.
batch_var Tensor 1D berisi nilai float 4/6/8/16/32/64-bit.

mhlo.bitcast (mhlo::BitcastOp)

Operasi Bitcast

Sintaksis:

operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)

Operasi ini bersifat eksklusif untuk kompiler XLA, sehingga belum memiliki spesifikasi.

Secara informal, operasi ini mengubah bentuk input sedemikian rupa sehingga susunan fisik elemen tetap tidak berubah.

Operasi ini membutuhkan informasi tata letak untuk memahami "susunan fisik elemen", dan dukungan tata letak di MHLO saat ini masih dalam pengembangan.

Contoh:

%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>

Ciri-ciri: AlwaysSpeculatableImplTrait

Antarmuka: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.bitcast_convert (mhlo::BitcastConvertOp)

Operasi BitcastConvert

Sintaksis:

operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)

Melakukan operasi bitcast pada tensor operand dan menghasilkan tensor result di mana bit-bit dari seluruh tensor operand diinterpretasikan ulang menggunakan tipe tensor result tersebut.

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert

Contoh:

%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>

Ciri-ciri: AlwaysSpeculatableImplTrait

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.broadcast (mhlo::BroadcastOp)

Operasi siaran

Operasi ini sedang dalam proses penghapusan dari StableHLO, sehingga tidak termasuk dalam spesifikasi: https://github.com/openxla/stablehlo/issues/3

Secara informal, operasi ini melakukan hal yang sama seperti Broadcast pada XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast

Contoh:

%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
broadcast_sizes ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)

Operasi BroadcastInDim

Memperluas dimensi dan/atau rank tensor input dengan menduplikasi data dalam tensor operand dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim

Contoh:

%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Antarmuka: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
broadcast_dimensions ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berbentuk statis atau berdimensi tunggal terbatas dengan tipe float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.case (mhlo::CaseOp)

Operasi kasus

Menghasilkan output dari eksekusi tepat satu function dari branches yang bergantung pada nilai index .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case

Contoh:

%result0, %result1 = "mhlo.case"(%index) ({
  mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
  mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Antarmuka: InferTypeOpInterface

Operan:

Operan Keterangan
index tensor nilai bilangan bulat tanpa tanda 32-bit

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» variadik tensor berperingkat dari float atau boolean 4/6/8/16/32/64-bit atau integer atau tipe kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor atau tensor berperingkat dari nilai terkuantisasi integer per-sumbu atau token

mhlo.cbrt (mhlo::CbrtOp)

Operasi CBRT

Sintaksis:

operation ::= `mhlo.cbrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi akar kubik elemen demi elemen pada tensor operand dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt

Contoh:

%result = mhlo.cbrt %operand : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr Tingkat akurasi yang diminta untuk operasi unary.

Operan:

Operan Keterangan
operand Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor.

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai terkuantisasi integer per-tensor.

mhlo.ceil (mhlo::CeilOp)

Operasi langit-langit

Sintaksis:

operation ::= `mhlo.ceil` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Melakukan operasi ceil per elemen pada tensor operand dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil

Contoh:

%result = mhlo.ceil %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand tensor berperingkat dari nilai float 4/6/8/16/32/64-bit atau bilangan bulat terkuantisasi per-tensor

Hasil:

Hasil Keterangan
result tensor berperingkat dari nilai float 4/6/8/16/32/64-bit atau bilangan bulat terkuantisasi per-tensor

mhlo.cholesky (mhlo::CholeskyOp)

Operasi Cholesky

Menghitung dekomposisi Cholesky dari sekumpulan matriks.

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky

Contoh:

%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
lower ::mlir::BoolAttr atribut boolean

Operan:

Operan Keterangan
a Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe float atau kompleks 4/6/8/16/32/64-bit dengan nilai elemen float 32/64-bit.

mhlo.clamp (mhlo::ClampOp)

Pengoperasian penjepit

Sintaksis:

operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
              `:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))

Membatasi setiap elemen tensor operand antara nilai minimum dan maksimum dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp

Contoh:

%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
min Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.
max Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)

Operasi Siaran Kolektif

Di dalam setiap grup proses pada grid proses, kirim nilai tensor operand dari proses sumber ke proses target dan hasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast

Contoh:

%result = "mhlo.collective_broadcast"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>

Ciri-ciri: CompatibleOperandsAndResultType

Antarmuka: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut Tipe MLIR Keterangan
replica_groups ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit
channel_handle ::mlir::mhlo::ChannelHandleAttr dua bilangan bulat 64-bit 'handle' dan 'type'

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.collective_permute (mhlo::CollectivePermuteOp)

Operasi CollectivePermute

Di dalam setiap grup proses dalam grid proses, mengirimkan nilai tensor operand dari proses sumber ke proses target dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute

Contoh:

%result = "mhlo.collective_permute"(%operand) {
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>

Sifat: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
source_target_pairs ::mlir::DenseIntElementsAttr Atribut elemen bilangan bulat tanpa tanda 64-bit
channel_handle ::mlir::mhlo::ChannelHandleAttr dua bilangan bulat 64-bit 'handle' dan 'type'

Operan:

Operan Keterangan
operand Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

mhlo.compare (mhlo::BandingkanOp)

Bandingkan operasi

Sintaksis:

operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
              attr-dict `:` functional-type(operands, results)

Melakukan perbandingan elemen demi elemen pada tensor lhs dan rhs sesuai dengan comparison_direction dan compare_type , dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare

Contoh:

%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>

Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Atribut:

Atribut Tipe MLIR Keterangan
comparison_direction ::mlir::mhlo::ComparisonDirectionAttr Operasi perbandingan mana yang harus dilakukan.
compare_type ::mlir::mhlo::ComparisonTypeAttr Jenis perbandingan mana yang akan digunakan.

Operan:

Operan Keterangan
lhs Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.
rhs Tensor berperingkat tipe data float atau boolean 4/6/8/16/32/64-bit atau integer atau kompleks 2/4/8/16/32/64-bit dengan elemen float 32/64-bit atau nilai integer terkuantisasi per-tensor atau nilai integer terkuantisasi per-sumbu.

Hasil:

Hasil Keterangan
«tidak disebutkan namanya» tensor berperingkat dari nilai boolean

mhlo.complex (mhlo::ComplexOp)

Operasi yang kompleks

Sintaksis:

operation ::= `mhlo.complex` operands attr-dict
              `:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))

Melakukan konversi elemen demi elemen ke nilai kompleks dari sepasang nilai riil dan imajiner, lhs dan rhs , dan menghasilkan tensor result .

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex

Contoh:

%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType

Antarmuka: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Efek: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs tensor berperingkat dari nilai float 32/64-bit
rhs tensor berperingkat dari nilai float 32/64-bit

Hasil:

Hasil Keterangan
result Tensor berperingkat tipe kompleks dengan nilai elemen float 32/64-bit

mhlo.composite (mhlo::CompositeOp)

Operasi komposit

Sintaksis:

operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)

Mengkapsulasi sebuah operasi yang terdiri dari (tersusun) operasi StableHLO lainnya, menerima inputs dan composite_attributes , serta menghasilkan results . Semantik operasi diimplementasikan oleh atribut decomposition . Operasi composite dapat digantikan dengan dekomposisinya tanpa mengubah semantik program. Dalam kasus di mana penyisipan dekomposisi tidak memberikan semantik operasi yang sama, lebih baik gunakan custom_call .

Kolom version (nilai defaultnya adalah 0 ) digunakan untuk menunjukkan kapan semantik suatu komposit berubah.

Lihat: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite

Contoh:

%results = mhlo.composite "my.op" %arg0, %arg1 {
  decomposition = @my_op,
  composite_attributes = { my_attribute = "my_value" },
  version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>

Antarmuka: SymbolUserOpInterface

Atribut:

Atribut Tipe MLIR Keterangan
name ::mlir::StringAttr string attribute
composite_attributes ::mlir::DictionaryAttr kamus nilai atribut bernama
decomposition ::mlir::FlatSymbolRefAttr flat symbol reference attribute
version ::mlir::IntegerAttr 32-bit signless integer attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.concatenate (mhlo::ConcatenateOp)

Concatenate operation

Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate

Contoh:

%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
val variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.constant (mhlo::ConstantOp)

Operasi konstan

Produces an output tensor from a constant value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant

Contoh:

%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , ConstantLike

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
value ::mlir::ElementsAttr constant vector/tensor attribute

Hasil:

Hasil Keterangan
output statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.convert (mhlo::ConvertOp)

Convert operation

Sintaksis:

operation ::= `mhlo.convert` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert

Contoh:

%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.convolution (mhlo::ConvolutionOp)

Operasi konvolusi

Sintaksis:

operation ::= `mhlo.convolution` `(`operands`)`
              `dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
              `window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
              $lhs_dilation, $rhs_dilation,
              $window_reversal) `}`
              attr-dict `:` functional-type(operands, results)

Computes dot products between windows of lhs and slices of rhs and produces result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Contoh:

%result = "mhlo.convolution"(%lhs, %rhs) {
  window_strides = dense<4> : tensor<2xi64>,
  padding = dense<0> : tensor<2x2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit yang nilainya positif.
batch_group_count ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit yang nilainya positif.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.copy (mhlo::CopyOp)

Copy operation

Sintaksis:

operation ::= `mhlo.copy` operands attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.

Contoh:

%0 = mhlo.copy %arg0 : tensor<f32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
cross_program_prefetch_index ::mlir::IntegerAttr 32-bit signless integer attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.cosh (mhlo::CoshOp)

Cosh operation

Sintaksis:

operation ::= `mhlo.cosh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosh operation on operand tensor and produces a result tensor.

Contoh:

%result = mhlo.cosh %operand : tensor<2x2xf32>

Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

Hasil:

Hasil Keterangan
result tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.cosine (mhlo::CosineOp)

Operasi kosinus

Sintaksis:

operation ::= `mhlo.cosine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine

Contoh:

%result = mhlo.cosine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.count_leading_zeros (mhlo::ClzOp)

Clz operation

Sintaksis:

operation ::= `mhlo.count_leading_zeros` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros

Contoh:

%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.create_token (mhlo::CreateTokenOp)

CreateToken operation

Sintaksis:

operation ::= `mhlo.create_token` attr-dict `:` type(results)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

Contoh:

%output = mhlo.create_token : !mhlo.token

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Hasil:

Hasil Keterangan
output token

mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)

CrossReplicaSum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

Contoh:

%result = "mhlo.cross-replica-sum"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.custom_call (mhlo::CustomCallOp)

CustomCall operation

Sintaksis:

operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
              attr-dict `:` functional-type(operands, results)

Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call

Contoh:

%results = "mhlo.custom_call"(%input0) {
  call_target_name = "foo",
  has_side_effect = false,
  backend_config = "bar",
  api_version = 1 : i32,
  called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>

A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.

If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.

Depending on the API version there are two ways to pass extra bits of static
information to the external function:

1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
   dictionary attribute, that will be encoded according to the custom call
   calling convention and passed to the external function as the attributes
   argument. External code is expected to use declarative bindings (see
   `xla/runtime/custom_call.h`) to decode them at run time. These custom
   calls are only supported if XLA uses XLA runtime.

2. For previous API versions it is the user responsibility to encode extra
   bits of static information as a string `backend_config` attribute, and
   decode it at run time.

Antarmuka: MemoryEffectOpInterface

Atribut:

Atribut MLIR Type Keterangan
call_target_name ::mlir::StringAttr string attribute
has_side_effect ::mlir::BoolAttr bool attribute
backend_config ::mlir::Attribute string attribute or dictionary of named attribute values
api_version ::mlir::mhlo::CustomCallApiVersionAttr Custom call API version
called_computations ::mlir::ArrayAttr flat symbol ref array attribute
custom_call_schedule ::mlir::mhlo::CustomCallScheduleAttr Specifies the desired schedule for the custom-call.
operand_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
result_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of CustomCall

Operan:

Operan Keterangan
inputs variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values

Hasil:

Hasil Keterangan
«unnamed» variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values

mhlo.divide (mhlo::DivOp)

Div operation

Sintaksis:

operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide

Contoh:

%result = mhlo.divide %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.domain (mhlo::DomainOp)

Domain operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:

  • Prevent unintentionally optimizing instructions across domains.
  • Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
kind ::mlir::mhlo::DomainKindAttr Kind of domain metatdata attached to an HLO domain.
entry_metadata ::mlir::StringAttr string attribute
exit_metadata ::mlir::StringAttr string attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.dot (mhlo::DotOp)

Dot operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot

Contoh:

%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
precision_config ::mlir::ArrayAttr Precision Config attribute

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dot_general (mhlo::DotGeneralOp)

DotGeneral operation

Computes dot products between slices of lhs and slices of rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general

Contoh:

%result = "mhlo.dot_general"(%lhs, %rhs) {
  dot_dimension_numbers = #mhlo.dot<
    lhs_batching_dimensions = [0],
    rhs_batching_dimensions = [0],
    lhs_contracting_dimensions = [2],
    rhs_contracting_dimensions = [1]
  >,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute
algorithm ::mlir::mhlo::DotAlgorithmAttr Attribute that models the algorithm constraints to use for computing dot.

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)

DynamicBroadcastInDim operation

This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .

It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim

Contoh:

%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
  broadcast_dimensions = array<i64: 2, 1>,
  known_expanding_dimensions = array<i64: 0>,
  known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
broadcast_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_expanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_nonexpanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
output_dimensions 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_conv (mhlo::DynamicConvOp)

DynamicConv operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

Contoh:

%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
  window_strides = dense<4> : tensor<2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit yang nilainya positif.
batch_group_count ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit yang nilainya positif.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
d_padding ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_gather (mhlo::DynamicGatherOp)

DynamicGather operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Contoh:

%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
  dimension_numbers = #mhlo.gather<
    offset_dims = [2, 3],
    collapsed_slice_dims = [0],
    start_index_map = [0, 2],
    index_vector_dim = 2>,
  indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
indices_are_sorted ::mlir::BoolAttr bool attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices ranked tensor of 2/4/8/16/32/64-bit integer values
slice_sizes statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_iota (mhlo::DynamicIotaOp)

DynamicIota operation

This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota

Contoh:

%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
iota_dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
output_shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_pad (mhlo::DynamicPadOp)

DynamicPad operation

Sintaksis:

operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)

Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
padding_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
edge_padding_low 1D tensor of index or 2/4/8/16/32/64-bit integer values
edge_padding_high 1D tensor of index or 2/4/8/16/32/64-bit integer values
interior_padding 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)

DynamicReshape operation

Sintaksis:

operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)

This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape

Contoh:

%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
output_shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_slice (mhlo::DynamicSliceOp)

DynamicSlice operation

Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice

Contoh:

%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
  : (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)

DynamicUpdateSlice operation

Sintaksis:

operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)

Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice

Contoh:

%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
  : (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
update ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.einsum (mhlo::EinsumOp)

Einsum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum

Contoh:

%result = "mhlo.einsum"(%lhs, %rhs) {
  einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
einsum_config ::mlir::StringAttr string attribute

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.erf (mhlo::ErfOp)

Erf operation

Sintaksis:

operation ::= `mhlo.erf` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise erf operation on operand tensor and produces a result tensor.

Contoh:

%result = mhlo.erf %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.exponential (mhlo::ExpOp)

Exp operation

Sintaksis:

operation ::= `mhlo.exponential` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential

Contoh:

%result = mhlo.exponential %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.exponential_minus_one (mhlo::Expm1Op)

Expm1 operation

Sintaksis:

operation ::= `mhlo.exponential_minus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one

Contoh:

%result = mhlo.exponential_minus_one %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.fft (mhlo::FftOp)

Fft operation

Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft

Contoh:

%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
fft_type ::mlir::mhlo::FftTypeAttr XLA fast fourier transform type.
fft_length ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.floor (mhlo::FloorOp)

Floor operation

Sintaksis:

operation ::= `mhlo.floor` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise floor of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor

Contoh:

%result = mhlo.floor %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values

mhlo.fusion (mhlo::FusionOp)

Fusion operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.

Atribut:

Atribut MLIR Type Keterangan
fusion_kind ::mlir::mhlo::FusionKindAttr fusion kind
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of Fusion

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

Hasil:

Hasil Keterangan
results variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.gather (mhlo::GatherOp)

Gather operation

Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

Contoh:

%result = "mhlo.gather"(%operand, %start_indices) {
  dimension_numbers = #stablehlo.gather<
    offset_dims = [3, 4],
    collapsed_slice_dims = [1],
    operand_batching_dims = [0],
    start_indices_batching_dims = [1],
    start_index_map = [2, 1],
    index_vector_dim = 3>,
  slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
  indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
indices_are_sorted ::mlir::BoolAttr bool attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)

GetDimensionSize operation

Produces the size of the given dimension of the operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size

Contoh:

%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» tensor of 32-bit signless integer values

mhlo.get_tuple_element (mhlo::GetTupleElementOp)

GetTupleElement operation

Sintaksis:

operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)

Extracts element at index position of the operand tuple and produces a result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element

Contoh:

%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
index ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operan:

Operan Keterangan
operand nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.if (mhlo::IfOp)

Jika operasi

Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if

Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor ) -> () }, { "mhlo.return"(%result_false_branch) : (tensor ) -> () }) : (tensor ) -> tensor

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface

Operan:

Operan Keterangan
pred ranked tensor of bool values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.imag (mhlo::ImagOp)

Imag operation

Sintaksis:

operation ::= `mhlo.imag` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the imaginary part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag

Contoh:

%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.infeed (mhlo::InfeedOp)

Infeed operation

Reads data from the infeed and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed

Contoh:

%results:2 = "mhlo.infeed"(%token) {
  infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)

Atribut:

Atribut MLIR Type Keterangan
infeed_config ::mlir::StringAttr string attribute
layout ::mlir::ArrayAttr atribut array

Operan:

Operan Keterangan
token token

Hasil:

Hasil Keterangan
«unnamed» variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token

mhlo.iota (mhlo::IotaOp)

Iota operation

Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota

Contoh:

%output = mhlo.iota dim = 0 : tensor<4x5xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
iota_dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Hasil:

Hasil Keterangan
output statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.is_finite (mhlo::IsFiniteOp)

IsFinite operation

Sintaksis:

operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)

Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite

Contoh:

%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
x ranked tensor of 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
y ranked tensor of bool values

mhlo.log (mhlo::LogOp)

Log operation

Sintaksis:

operation ::= `mhlo.log` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log

Contoh:

%result = mhlo.log %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.log_plus_one (mhlo::Log1pOp)

Log1p operation

Sintaksis:

operation ::= `mhlo.log_plus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one

Contoh:

%result = mhlo.log_plus_one %operand : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.logistic (mhlo::LogisticOp)

Operasi logistik

Sintaksis:

operation ::= `mhlo.logistic` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logistic operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic

Contoh:

%result = mhlo.logistic %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.map (mhlo::MapOp)

Map operation

Applies a map function computation to inputs along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map

Contoh:

%result = "mhlo.map"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.maximum (mhlo::MaxOp)

Max operation

Sintaksis:

operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum

Contoh:

%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.minimum (mhlo::MinOp)

Min operation

Sintaksis:

operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum

Contoh:

%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)

Minimizes the rank of two or more shapes to be broadcasted

Sintaksis:

operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)

Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .

The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.

The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.

Here is an example with two input shapes:

mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
                                 [1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]

The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
shapes variadic of 1D tensor of index values

Hasil:

Hasil Keterangan
results variadic of 1D tensor of index values

mhlo.multiply (mhlo::MulOp)

Mul operation

Sintaksis:

operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise product of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply

Contoh:

%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.negate (mhlo::NegOp)

Neg operation

Sintaksis:

operation ::= `mhlo.negate` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise negation of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate

Contoh:

%result = mhlo.negate %operand : tensor<2x3xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.not (mhlo::NotOp)

Not operation

Sintaksis:

operation ::= `mhlo.not` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise NOT of tensor operand of type integer and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not

Contoh:

%result = mhlo.not %operand : tensor<5x3x1xi1>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of bool or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of bool or 2/4/8/16/32/64-bit integer values

mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)

OptimizationBarrier operation

Sintaksis:

operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?

Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier

Contoh:

%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>

Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

Hasil:

Hasil Keterangan
result variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.or (mhlo::OrOp)

Or operation

Sintaksis:

operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or

Contoh:

%result = mhlo.or %lhs, %rhs : tensor<2xi1>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values
rhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.outfeed (mhlo::OutfeedOp)

Outfeed operation

Writes inputs to the outfeed and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed

Contoh:

%result = "mhlo.outfeed"(%input0, %token) {
  outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
outfeed_config ::mlir::StringAttr string attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
token token

Hasil:

Hasil Keterangan
«unnamed» token

mhlo.pad (mhlo::PadOp)

Pad operation

Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad

Contoh:

%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
  : (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
edge_padding_low ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
edge_padding_high ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
interior_padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
padding_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.partition_id (mhlo::PartitionIdOp)

PartitionId operation

Sintaksis:

operation ::= `mhlo.partition_id` attr-dict `:` type(results)

Produces partition_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id

Contoh:

%result = mhlo.partition_id : tensor<ui32>

Interfaces: InferTypeOpInterface

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.popcnt (mhlo::PopulationCountOp)

PopulationCount operation

Sintaksis:

operation ::= `mhlo.popcnt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt

Contoh:

%result = mhlo.popcnt %operand : tensor<4xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.power (mhlo::PowOp)

Pow operation

Sintaksis:

operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power

Contoh:

%result = mhlo.power %lhs, %rhs : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.ragged_dot (mhlo::RaggedDotOp)

Ragged matrix multiplication over a single ragged dimension

This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.

In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).

In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).

In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
ragged_dot_dimension_numbers ::mlir::mhlo::RaggedDotDimensionNumbersAttr Attribute that models the dimension information for ragged dot.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operan:

Operan Keterangan
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
group_sizes ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.real (mhlo::RealOp)

Real operation

Sintaksis:

operation ::= `mhlo.real` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the real part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real

Contoh:

%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)

RealDynamicSlice operation

Sintaksis:

operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Contoh:

%result = mhlo.real_dynamic_slice %operand,
            %start_indices, %limit_indices, %strides
       : (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices 1D tensor of index or 2/4/8/16/32/64-bit integer values
limit_indices 1D tensor of index or 2/4/8/16/32/64-bit integer values
strides 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.recv (mhlo::RecvOp)

Recv operation

Receives data from a channel with channel_id and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv

Contoh:

%results:2 = "mhlo.recv"(%token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
  is_host_transfer = false,
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)

Atribut:

Atribut MLIR Type Keterangan
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute
source_target_pairs ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
token token

Hasil:

Hasil Keterangan
«unnamed» variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token

mhlo.reduce (mhlo::ReduceOp)

Reduce operation

Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce

Contoh:

%result = "mhlo.reduce"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_values variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.reduce_precision (mhlo::ReducePrecisionOp)

ReducePrecision operation

Sintaksis:

operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
              attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))

Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision

Contoh:

%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
exponent_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
mantissa_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
output ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.reduce_scatter (mhlo::ReduceScatterOp)

Operasi ReduceScatter

Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter

Contoh:

%result = "mhlo.reduce_scatter"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
  %0 = mhlo.add %arg0, %arg1 : tensor<f32>
  mhlo.return %0 : tensor<f32>
}) {
  scatter_dimension = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>

Atribut:

Atribut MLIR Type Keterangan
scatter_dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
use_global_device_ids ::mlir::UnitAttr atribut unit

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.reduce_window (mhlo::ReduceWindowOp)

ReduceWindow operation

Applies a reduction function body to windows of inputs and init_values and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window

Contoh:

%result = "mhlo.reduce_window"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  window_dimensions = dense<[2, 1]> : tensor<2xi64>,
  window_strides = dense<[4, 1]> : tensor<2xi64>,
  base_dilations = dense<[2, 1]> : tensor<2xi64>,
  window_dilations = dense<[3, 1]> : tensor<2xi64>,
  padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
base_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_values variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.remainder (mhlo::RemOp)

Rem operation

Sintaksis:

operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder

Contoh:

%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.replica_id (mhlo::ReplicaIdOp)

ReplicaId operation

Sintaksis:

operation ::= `mhlo.replica_id` attr-dict `:` type(results)

Produces replica_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id

Contoh:

%result = mhlo.replica_id : tensor<ui32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.reshape (mhlo::ReshapeOp)

Reshape operation

Sintaksis:

operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)

Performs reshape of operand tensor to a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape

Contoh:

%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.return (mhlo::ReturnOp)

_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425

Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.

Example:

    ```mlir
    %result = "mhlo.reduce"(%input, %init_value) ({
      ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
        %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
        "mhlo.return"(%0) : (tensor<i32>) -> ()
    }) {
      dimensions = dense<1> : tensor<1xi64>
    } : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
    ```_

Syntax:

```

operation ::= mhlo.return $results attr-dict ( : type($results)^)?


Traits: `AlwaysSpeculatableImplTrait`, `Terminator`

Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`

Effects: `MemoryEffects::Effect{}`

#### Operands:

| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |



### `mhlo.reverse` (mhlo::ReverseOp)

_Reverse operation_

Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.

See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>

Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.rng (mhlo::RngOp)

Rng operation

Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng

Contoh:

%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>

Traits: InferTensorType

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
rng_distribution ::mlir::mhlo::RngDistributionAttr XLA PRNG distribution to be used.

Operan:

Operan Keterangan
a 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
b 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)

RngBitGenerator operation

Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator

Contoh:

%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
rng_algorithm ::mlir::mhlo::RngAlgorithmAttr XLA PRNG algorithm to be used.

Operan:

Operan Keterangan
initial_state ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
output_state ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
output statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

mhlo.round_nearest_afz (mhlo::RoundOp)

Round operation

Sintaksis:

operation ::= `mhlo.round_nearest_afz` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz

Contoh:

%result = mhlo.round_nearest_afz %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)

RoundNearestEven operation

Sintaksis:

operation ::= `mhlo.round_nearest_even` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even

Contoh:

%result = mhlo.round_nearest_even %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.rsqrt (mhlo::RsqrtOp)

Rsqrt operation

Sintaksis:

operation ::= `mhlo.rsqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt

Contoh:

%result = mhlo.rsqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.scan (mhlo::ScanOp)

Scan operation

Applies a reduction function body to inputs and inits along the dimension and produces results (comprising outputs and carries ).

If is_reverse is true, the scan is performed in reverse order. is_associative indicates whether the reduction function is associative.

See: https://www.tensorflow.org/xla/operation_semantics#scan

Traits: AttrSizedOperandSegments , InferTensorType , RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.
is_reverse ::mlir::BoolAttr bool attribute
is_associative ::mlir::mhlo::AssociativityAttr Associativity of the scan operation.

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
inits variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
results variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.scatter (mhlo::ScatterOp)

Scatter operation

Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter

Contoh:

%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  scatter_dimension_numbers = #mhlo.scatter<
    update_window_dims = [3, 4],
    inserted_window_dims = [1],
    input_batching_dims = [0],
    scatter_indices_batching_dims = [1],
    scatter_dims_to_operand_dims = [2, 1],
    index_vector_dim = 3>,
  indices_are_sorted = false,
  unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>

Traits: RecursiveMemoryEffects , SameVariadicOperandSize

Interfaces: InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
scatter_dimension_numbers ::mlir::mhlo::ScatterDimensionNumbersAttr Attribute that models the dimension information for scatter
indices_are_sorted ::mlir::BoolAttr bool attribute
unique_indices ::mlir::BoolAttr bool attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
scatter_indices ranked tensor of integer or index values
updates variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.select (mhlo::SelectOp)

Select operation

Sintaksis:

operation ::= `mhlo.select` operands attr-dict `:`
              custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))

Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select

Contoh:

%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
pred ranked tensor of bool values
on_true ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
on_false ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.select_and_scatter (mhlo::SelectAndScatterOp)

SelectAndScatter operation

Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter

Contoh:

%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GE>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  window_dimensions = dense<[3, 1]> : tensor<2xi64>,
  window_strides = dense<[2, 1]> : tensor<2xi64>,
  padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>

Traits: RecursiveMemoryEffects

Interfaces: InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
source ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.send (mhlo::SendOp)

Send operation

Sends inputs to a channel channel_id and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send

Contoh:

%result = "mhlo.send"(%operand, %token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
  is_host_transfer = false,
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute
source_target_pairs ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
token token

Hasil:

Hasil Keterangan
«unnamed» token

mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)

SetDimensionSize operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize

Contoh:

%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dimension ::mlir::IntegerAttr Atribut bilangan bulat tak bertanda 64-bit yang nilainya non-negatif.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
size tensor of 32-bit signless integer values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.shift_left (mhlo::ShiftLeftOp)

ShiftLeft operation

Sintaksis:

operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left

Contoh:

%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)

ShiftRightArithmetic operation

Sintaksis:

operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic

Contoh:

%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)

ShiftRightLogical operation

Sintaksis:

operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical

Contoh:

%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.sign (mhlo::SignOp)

Sign operation

Sintaksis:

operation ::= `mhlo.sign` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Returns the sign of the operand element-wise and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign

Contoh:

%result = mhlo.sign %operand : tensor<7xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.sine (mhlo::SineOp)

Sine operation

Sintaksis:

operation ::= `mhlo.sine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine

Contoh:

%result = mhlo.sine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.sinh (mhlo::SinhOp)

Sinh operation

Sintaksis:

operation ::= `mhlo.sinh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sinh operation on operand tensor and produces a result tensor.

Contoh:

%result = mhlo.sinh %operand : tensor<2x2xf32>

Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Operan:

Operan Keterangan
operand tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

Hasil:

Hasil Keterangan
result tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.slice (mhlo::SliceOp)

Slice operation

Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

Contoh:

%result = "mhlo.slice" (%operand) {
  start_indices = dense<[1, 2]> : tensor<2xi64>,
  limit_indices = dense<[3, 4]> : tensor<2xi64>,
  strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
start_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
limit_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.sort (mhlo::SortOp)

Sort operation

Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort

Contoh:

%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
    %predicate = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GT>
      } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
  dimension = 0 : i64,
  is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
dimension ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit
is_stable ::mlir::BoolAttr bool attribute

Operan:

Operan Keterangan
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.sqrt (mhlo::SqrtOp)

Sqrt operation

Sintaksis:

operation ::= `mhlo.sqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise square root operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt

Contoh:

%result = mhlo.sqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.stochastic_convert (mhlo::StochasticConvertOp)

StochasticConvert operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295

Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.

Traits: AlwaysSpeculatableImplTrait , Elementwise

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float values
random ranked tensor of 2/4/8/16/32/64-bit unsigned integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.subtract (mhlo::SubtractOp)

Subtract operation

Sintaksis:

operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract

Contoh:

%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.tan (mhlo::TanOp)

Tan operation

Sintaksis:

operation ::= `mhlo.tan` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954

Informally, this operation returns Tan(operand) element-wise.

Contoh:

%0 = mhlo.tan %arg0 : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.tanh (mhlo::TanhOp)

Tanh operation

Sintaksis:

operation ::= `mhlo.tanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh

Contoh:

%result = mhlo.tanh %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.topk (mhlo::TopKOp)

TopK operation

Sintaksis:

operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
              type($operand) `->` `(`type($values)`,` type($indices)`)`

Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .

See: https://www.tensorflow.org/xla/operation_semantics#top-k

Contoh:

%values, %indices = mhlo.topk(%operand, k=5, largest=true)
  : tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)

Traits: InferTensorType , RecursiveMemoryEffects

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
k ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit
largest ::mlir::BoolAttr bool attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
values ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
indices ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.torch_index_select (mhlo::TorchIndexSelectOp)

TorchIndexSelect operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html

The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.

Contoh:

%result = "mhlo.torch_index_select"(%operand, %index) {
  dim = 2 : i64,
  batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
dim ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit
batch_dims ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
index ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.trace (mhlo::TraceOp)

Trace operation

Sintaksis:

operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604

It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.

Contoh:

mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>

Atribut:

Atribut MLIR Type Keterangan
tag ::mlir::StringAttr string attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.transpose (mhlo::TransposeOp)

Transpose operation

Permutes the dimensions of operand tensor using permutation and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose

Contoh:

%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
permutation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.triangular_solve (mhlo::TriangularSolveOp)

TriangularSolve operation

Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve

Contoh:

%result = "mhlo.triangular_solve"(%a, %b) {
  left_side = true,
  lower = true,
  unit_diagonal = false,
  transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Atribut:

Atribut MLIR Type Keterangan
left_side ::mlir::BoolAttr bool attribute
lower ::mlir::BoolAttr bool attribute
unit_diagonal ::mlir::BoolAttr bool attribute
transpose_a ::mlir::mhlo::TransposeAttr Transpose options

Operan:

Operan Keterangan
a ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values
b ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

Hasil:

Hasil Keterangan
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.tuple (mhlo::TupleOp)

Tuple operation

Sintaksis:

operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))

Produces a result tuple from values val .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple

Contoh:

%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
val variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
result nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)

UniformDequantize operation

Sintaksis:

operation ::= `mhlo.uniform_dequantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize

Contoh:

%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of per-tensor integer quantized or per-axis integer quantized values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.uniform_quantize (mhlo::UniformQuantizeOp)

UniformQuantize operation

Sintaksis:

operation ::= `mhlo.uniform_quantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize

Contoh:

%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
operand ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

Hasil:

Hasil Keterangan
result ranked tensor of per-tensor integer quantized or per-axis integer quantized values

mhlo.while (mhlo::WhileOp)

While operation

Produces the output from executing body function 0 or more times while the cond function outputs true .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while

Contoh:

%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction LT>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface , OpAsmOpInterface

Operan:

Operan Keterangan
operand variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

Hasil:

Hasil Keterangan
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)

XlaRngGetAndUpdateState operation

Sintaksis:

operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.

The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.

Interfaces: InferTypeOpInterface

Atribut:

Atribut MLIR Type Keterangan
delta ::mlir::IntegerAttr Atribut bilangan bulat tanpa tanda 64-bit

Hasil:

Hasil Keterangan
«unnamed» statically shaped tensor of 64-bit unsigned integer values

mhlo.xor (mhlo::XorOp)

Xor operation

Sintaksis:

operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor

Contoh:

%result = mhlo.xor %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operan:

Operan Keterangan
lhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values
rhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values

Hasil:

Hasil Keterangan
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

Atribut

ArgResultAliasAttr

Attribute that models the alias relationship of entry function argument

This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.

This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.

func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
    mhlo.result_alias<result_index = [2], ...>}
  ) -> tensor<2xf32>, tensor<3xf32> {
  // function body ...
}

Parameter:

Parameter Tipe C++ Keterangan
argTupleIndices ::llvm::ArrayRef<int64_t> Dimensi
resultIndex int64_t
resultTupleIndices ::llvm::ArrayRef<int64_t> Dimensi
isMustAlias bool

AsosiativitasAttr

Associativity of the scan operation.

Sintaksis:

#mhlo.associativity<
  ::mlir::mhlo::Associativity   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::Associativity an enum of type Associativity

ChannelHandleAttr

Two 64-bit integers 'handle' and 'type'

Sintaksis:

#mhlo.channel_handle<
  int64_t,   # handle
  int64_t   # type
>

Parameter:

Parameter Tipe C++ Keterangan
menangani int64_t
jenis int64_t

ComparisonDirectionAttr

Which comparison operation to perform.

Sintaksis:

#mhlo.comparison_direction<
  ::mlir::mhlo::ComparisonDirection   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::ComparisonDirection an enum of type ComparisonDirection

ComparisonTypeAttr

Which comparison type to use.

Sintaksis:

#mhlo.comparison_type<
  ::mlir::mhlo::ComparisonType   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::ComparisonType an enum of type ComparisonType

ConvDimensionNumbersAttr

Structure of dimension information for conv op

Parameter:

Parameter Tipe C++ Keterangan
inputBatchDimension int64_t
inputFeatureDimension int64_t
inputSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensi
kernelInputFeatureDimension int64_t
kernelOutputFeatureDimension int64_t
kernelSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensi
outputBatchDimension int64_t
outputFeatureDimension int64_t
outputSpatialDimensions ::llvm::ArrayRef<int64_t> Dimensi

CrossProgramPrefetchAttr

Argument that is prefetched from another program

Sintaksis:

#mhlo.cross_program_prefetch<
  int64_t,   # parameter
  ::llvm::ArrayRef<int64_t>,   # indices
  std::optional<int64_t>   # offset
>

This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.

A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .

An empty value for indices means the whole shape is prefetched.

Misalnya,

module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
  func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
    return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
  func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
    %2 = "mhlo.async_done"(%1) {called_computation=@copy}
    return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
}

The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.

Parameter:

Parameter Tipe C++ Keterangan
parameter int64_t
indeks ::llvm::ArrayRef<int64_t> Dimensi
mengimbangi std::optional<int64_t>

CustomCallScheduleAttr

Specifies the desired schedule for the custom-call.

Sintaksis:

#mhlo.custom_call_schedule<
  ::mlir::mhlo::CustomCallSchedule   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::CustomCallSchedule an enum of type CustomCallSchedule

DequantizeModeAttr

_Dequantization mode. Only MIN COMBINED is supported.

Sintaksis:

#mhlo.dequantize_mode<
  ::mlir::mhlo::DequantizeMode   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::DequantizeMode an enum of type DequantizeMode

DomainKindAttr

Kind of domain metatdata attached to an HLO domain.

Sintaksis:

#mhlo.kind<
  ::mlir::mhlo::DomainKind   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::DomainKind an enum of type DomainKind

DotAlgorithmAttr

Attribute that models the algorithm constraints to use for computing dot.

Sintaksis:

#mhlo.dot_algorithm<
  Type,   # lhsPrecisionType
  Type,   # rhsPrecisionType
  Type,   # accumulationType
  int64_t,   # lhsComponentCount
  int64_t,   # rhsComponentCount
  int64_t,   # numPrimitiveOperations
  bool   # allowImpreciseAccumulation
>

Parameter:

Parameter Tipe C++ Keterangan
lhsPrecisionType Type
rhsPrecisionType Type
accumulationType Type
lhsComponentCount int64_t
rhsComponentCount int64_t
numPrimitiveOperations int64_t
allowImpreciseAccumulation bool

DotDimensionNumbersAttr

Attribute that models the dimension information for dot.

Parameter:

Parameter Tipe C++ Keterangan
lhsBatchingDimensions ::llvm::ArrayRef<int64_t> Dimensi
rhsBatchingDimensions ::llvm::ArrayRef<int64_t> Dimensi
lhsContractingDimensions ::llvm::ArrayRef<int64_t> Dimensi
rhsContractingDimensions ::llvm::ArrayRef<int64_t> Dimensi

FftTypeAttr

XLA fast fourier transform type.

Sintaksis:

#mhlo.fft_type<
  ::mlir::mhlo::FftType   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::FftType an enum of type FftType

FusionKindAttr

Fusion kind

Sintaksis:

#mhlo.fusion_kind<
  ::mlir::mhlo::FusionKind   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::FusionKind an enum of type FusionKind

GatherDimensionNumbersAttr

Attribute that models the dimension information for gather

Parameter:

Parameter Tipe C++ Keterangan
offsetDims ::llvm::ArrayRef<int64_t> Dimensi
collapsedSliceDims ::llvm::ArrayRef<int64_t> Dimensi
operandBatchingDims ::llvm::ArrayRef<int64_t> Dimensi
startIndicesBatchingDims ::llvm::ArrayRef<int64_t> Dimensi
startIndexMap ::llvm::ArrayRef<int64_t> Dimensi
indexVectorDim int64_t

OutputOperandAliasAttr

Attribute that models the alias relationship of output and operand of a CustomCall op

Sintaksis:

#mhlo.output_operand_alias<
  ::llvm::ArrayRef<int64_t>,   # outputTupleIndices
  int64_t,   # operandIndex
  ::llvm::ArrayRef<int64_t>   # operandTupleIndices
>

This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.

See https://www.tensorflow.org/xla/aliasing

Example when used as array with in mhlo.custom-call:

%0 = "mhlo.custom_call"(%arg0, %arg1) {
  // other attributes
  output_operand_alias = [
    #mhlo.output_operand_alias<output_tuple_indices = [0],
                               operand_index = 0,
                               operand_tuple_indices = [1]>
  ]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>

The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.

Parameter:

Parameter Tipe C++ Keterangan
outputTupleIndices ::llvm::ArrayRef<int64_t> Dimensi
operandIndex int64_t
operandTupleIndices ::llvm::ArrayRef<int64_t> Dimensi

PrecisionAttr

XLA precision for an operand. Has backend specific meaning.

Sintaksis:

#mhlo.precision<
  ::mlir::mhlo::Precision   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::Precision an enum of type Precision

RaggedDotDimensionNumbersAttr

Attribute that models the dimension information for ragged dot.

Parameter:

Parameter Tipe C++ Keterangan
dotDimensionNumbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
lhsRaggedDimensions ::llvm::ArrayRef<int64_t> Dimensi
rhsGroupDimensions ::llvm::ArrayRef<int64_t> Dimensi

ResultAccuracyAttr

The requested accuracy for unary ops.

Parameter:

Parameter Tipe C++ Keterangan
atol APFloat
rtol APFloat
ulps int64_t
mode ::mlir::mhlo::ResultAccuracyModeAttr XLA result accuracy mode.

ResultAccuracyModeAttr

XLA result accuracy mode.

Sintaksis:

#mhlo.result_accuracy_mode<
  ::mlir::mhlo::ResultAccuracyMode   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::ResultAccuracyMode an enum of type ResultAccuracyMode

RngAlgorithmAttr

XLA PRNG algorithm to be used.

Sintaksis:

#mhlo.rng_algorithm<
  ::mlir::mhlo::RngAlgorithm   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::RngAlgorithm an enum of type RngAlgorithm

RngDistributionAttr

XLA PRNG distribution to be used.

Sintaksis:

#mhlo.rng_distribution<
  ::mlir::mhlo::RngDistribution   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::RngDistribution an enum of type RngDistribution

ScatterDimensionNumbersAttr

Attribute that models the dimension information for scatter

Parameter:

Parameter Tipe C++ Keterangan
updateWindowDims ::llvm::ArrayRef<int64_t> Dimensi
insertedWindowDims ::llvm::ArrayRef<int64_t> Dimensi
inputBatchingDims ::llvm::ArrayRef<int64_t> Dimensi
scatterIndicesBatchingDims ::llvm::ArrayRef<int64_t> Dimensi
scatterDimsToOperandDims ::llvm::ArrayRef<int64_t> Dimensi
indexVectorDim int64_t

TransposeAttr

Transpose options

Sintaksis:

#mhlo.transpose<
  ::mlir::mhlo::Transpose   # value
>

Parameter:

Parameter Tipe C++ Keterangan
nilai ::mlir::mhlo::Transpose an enum of type Transpose

TypeExtensionsAttr

Attribute that extends tensor type with MHLO type properties.

Sintaksis:

#mhlo.type_extensions<
  ::llvm::ArrayRef<int64_t>   # bounds
>

This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.

See HLO_BoundedAttrInterface for documentation for bounds .

Parameter:

Parameter Tipe C++ Keterangan
batas ::llvm::ArrayRef<int64_t>

Jenis

AsyncBundleType

Opaque collection of other types

Sintaksis:

!mhlo.async_bundle<
  ::llvm::ArrayRef<Type>   # types
>

Parameter:

Parameter Tipe C++ Keterangan
jenis ::llvm::ArrayRef<Type>

Enum

Asosiativitas

Associativity of the scan operation.

Kasus:

Simbol Nilai Rangkaian
MUNGKIN 0 MUNGKIN
BENAR 1 BENAR
PALSU 2 PALSU

ComparisonDirection

Which comparison operation to perform.

Kasus:

Simbol Nilai Rangkaian
EQ 0 EQ
Timur Laut 1 Timur Laut
GE 2 GE
GT 3 GT
LE 4 LE
LT 5 LT

ComparisonType

Which comparison type to use.

Kasus:

Simbol Nilai Rangkaian
BUKAN TIPE 0 BUKAN TIPE
MENGAMBANG 1 MENGAMBANG
TOTALORDER 2 TOTALORDER
DITANDATANGANI 3 DITANDATANGANI
UNSIGNED 4 UNSIGNED

CustomCallApiVersion

Custom call API version

Kasus:

Simbol Nilai Rangkaian
API_VERSION_UNSPECIFIED 0 API_VERSION_UNSPECIFIED
API_VERSION_ORIGINAL 1 API_VERSION_ORIGINAL
API_VERSION_STATUS_RETURNING 2 API_VERSION_STATUS_RETURNING
API_VERSION_STATUS_RETURNING_UNIFIED 3 API_VERSION_STATUS_RETURNING_UNIFIED
API_VERSION_TYPED_FFI 4 API_VERSION_TYPED_FFI

CustomCallSchedule

Specifies the desired schedule for the custom-call.

Kasus:

Simbol Nilai Rangkaian
TIDAK ADA 0 TIDAK ADA
TERBARU 1 TERBARU
TERAWAL 2 TERAWAL

DequantizeMode

_Dequantization mode. Only MIN COMBINED is supported.

Kasus:

Simbol Nilai Rangkaian
MIN_COMBINED 0 MIN_COMBINED

DomainKind

Kind of domain metatdata attached to an HLO domain.

Kasus:

Simbol Nilai Rangkaian
pemecahan 0 pemecahan

FftType

XLA fast fourier transform type.

Kasus:

Simbol Nilai Rangkaian
FFT 0 FFT
IFFT 1 IFFT
RFFT 2 RFFT
IRFFT 3 IRFFT

FusionKind

Fusion kind

Kasus:

Simbol Nilai Rangkaian
kLoop 0 kLoop
kInput 1 kInput
kOutput 2 kOutput
kCustom 3 kCustom

Ketepatan

XLA precision for an operand. Has backend specific meaning.

Kasus:

Simbol Nilai Rangkaian
BAWAAN 0 BAWAAN
TINGGI 1 TINGGI
PALING TINGGI 2 PALING TINGGI

ResultAccuracyMode

XLA result accuracy mode.

Kasus:

Simbol Nilai Rangkaian
BAWAAN 0 BAWAAN
PALING TINGGI 1 PALING TINGGI
TOLERANSI 2 TOLERANSI

RngAlgorithm

XLA PRNG algorithm to be used.

Kasus:

Simbol Nilai Rangkaian
BAWAAN 0 BAWAAN
THREE_FRY 1 THREE_FRY
PHILOX 2 PHILOX

RngDistribution

XLA PRNG distribution to be used.

Kasus:

Simbol Nilai Rangkaian
SERAGAM 1 SERAGAM
NORMAL 2 NORMAL

Mengubah urutan

Transpose options

Kasus:

Simbol Nilai Rangkaian
TRANSPOSE_INVALID 0 TRANSPOSE_INVALID
NO_TRANSPOSE 1 NO_TRANSPOSE
MENGUBAH URUTAN 2 MENGUBAH URUTAN
ADJOINT 3 ADJOINT