Регуляризация графов для классификации документов с использованием естественных графов

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть исходный код на GitHub

Обзор

Регуляризация графов - это особый метод в рамках более широкой парадигмы обучения нейронных графов ( Bui et al., 2018 ). Основная идея состоит в том, чтобы обучать модели нейронных сетей с целью, упорядоченной по графу, используя как помеченные, так и немеченые данные.

В этом руководстве мы рассмотрим использование регуляризации графа для классификации документов, которые образуют естественный (органический) граф.

Общий рецепт создания модели с регуляризацией графа с использованием структуры нейронного структурированного обучения (NSL) выглядит следующим образом:

  1. Сгенерируйте данные обучения из входного графика и примеров функций. Узлы в графе соответствуют выборкам, а ребра в графе соответствуют сходству между парами выборок. Результирующие обучающие данные будут содержать соседние функции в дополнение к исходным функциям узла.
  2. Создание нейронной сети в качестве базовой модели с использованием Keras последовательного, функционального или подкласса API.
  3. Оберните базовую модель GraphRegularization оболочкой GraphRegularization , который предоставляется фреймворком NSL, чтобы создать новую модель графа Keras . Эта новая модель будет включать потерю регуляризации графа в качестве члена регуляризации в цели обучения.
  4. Обучите и оцените модель графа Keras .

Настраивать

Установите пакет нейронного структурированного обучения.

pip install --quiet neural-structured-learning

Зависимости и импорт

import neural_structured_learning as nsl

import tensorflow as tf

# Resets notebook state
tf.keras.backend.clear_session()

print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print(
    "GPU is",
    "available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")
Version:  2.2.0
Eager mode:  True
GPU is NOT AVAILABLE

Набор данных Cora

Набор данных Cora - это граф цитирования, где узлы представляют статьи машинного обучения, а края - ссылки между парами статей. Задача заключается в классификации документов, цель которой состоит в том, чтобы разделить каждую статью на одну из 7 категорий. Другими словами, это задача классификации нескольких классов с 7 классами.

График

Исходный граф ориентирован. Однако для целей этого примера мы рассматриваем неориентированную версию этого графа. Итак, если в статье A цитируется статья B, мы также считаем, что статья B процитировала A. Хотя это не обязательно так, в этом примере мы рассматриваем цитаты как показатель сходства, которое обычно является коммутативным свойством.

Функции

Каждая статья во входных данных фактически содержит 2 функции:

  1. Слова : плотное, разностороннее представление текста в бумаге. Словарь для набора данных Cora содержит 1433 уникальных слова. Таким образом, длина этой функции составляет 1433, а значение в позиции «i» равно 0/1, указывая, существует ли слово «i» в словаре в данной статье или нет.

  2. Этикетка : одно целое число, представляющее идентификатор класса (категорию) статьи.

Загрузите набор данных Cora

wget --quiet -P /tmp https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
tar -C /tmp -xvzf /tmp/cora.tgz
cora/
cora/README
cora/cora.cites
cora/cora.content

Преобразование данных Cora в формат NSL

Чтобы предварительно обработать набор данных Cora и преобразовать его в формат, необходимый для нейронного структурированного обучения, мы запустим сценарий preprocess_cora_dataset.py , который включен в репозиторий NSL на github. Этот сценарий делает следующее:

  1. Сгенерируйте соседние объекты, используя исходные узлы и график.
  2. Сгенерируйте разделение tf.train.Example и тестовых данных, содержащих экземпляры tf.train.Example .
  3. Сохраните полученные данные поезда и тестирования в формате TFRecord .
!wget https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py

!python preprocess_cora_dataset.py \
--input_cora_content=/tmp/cora/cora.content \
--input_cora_graph=/tmp/cora/cora.cites \
--max_nbrs=5 \
--output_train_data=/tmp/cora/train_merged_examples.tfr \
--output_test_data=/tmp/cora/test_examples.tfr
--2020-07-01 11:15:33--  https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 151.101.192.133, 151.101.128.133, 151.101.64.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|151.101.192.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 11640 (11K) [text/plain]
Saving to: ‘preprocess_cora_dataset.py’

preprocess_cora_dat 100%[===================>]  11.37K  --.-KB/s    in 0s      

2020-07-01 11:15:33 (84.9 MB/s) - ‘preprocess_cora_dataset.py’ saved [11640/11640]

Reading graph file: /tmp/cora/cora.cites...
Done reading 5429 edges from: /tmp/cora/cora.cites (0.01 seconds).
Making all edges bi-directional...
Done (0.06 seconds). Total graph nodes: 2708
Joining seed and neighbor tf.train.Examples with graph edges...
Done creating and writing 2155 merged tf.train.Examples (1.38 seconds).
Out-degree histogram: [(1, 386), (2, 468), (3, 452), (4, 309), (5, 540)]
Output training data written to TFRecord file: /tmp/cora/train_merged_examples.tfr.
Output test data written to TFRecord file: /tmp/cora/test_examples.tfr.
Total running time: 0.04 minutes.

Глобальные переменные

Пути к файлу для поезда и тестовых данных основаны на значениях флагов командной строки, используемых для вызова сценария preprocess_cora_dataset.py выше.

### Experiment dataset
TRAIN_DATA_PATH = '/tmp/cora/train_merged_examples.tfr'
TEST_DATA_PATH = '/tmp/cora/test_examples.tfr'

### Constants used to identify neighbor features in the input.
NBR_FEATURE_PREFIX = 'NL_nbr_'
NBR_WEIGHT_SUFFIX = '_weight'

Гиперпараметры

Мы будем использовать экземпляр HParams чтобы включить различные гиперпараметры и константы, используемые для обучения и оценки. Кратко опишем каждый из них ниже:

  • num_classes : всего 7 различных классов

  • max_seq_length : это размер словаря, и все экземпляры на входе имеют плотное представление с множеством горячих слов. Другими словами, значение 1 для слова указывает, что слово присутствует во входных данных, а значение 0 указывает, что это не так.

  • distance_type : это показатель расстояния, используемый для упорядочения выборки с ее соседями.

  • graph_regularization_multiplier : это контролирует относительный вес члена регуляризации графика в общей функции потерь.

  • num_neighbors : количество соседей, используемых для регуляризации графа. Это значение должно быть меньше или равно max_nbrs командной строки max_nbrs используемому выше при запуске preprocess_cora_dataset.py .

  • num_fc_units : количество полностью связанных слоев в нашей нейронной сети.

  • train_epochs : Количество эпох обучения.

  • batch_size : размер пакета, используемый для обучения и оценки.

  • dropout_rate : контролирует скорость отсева после каждого полностью подключенного слоя

  • eval_steps : количество пакетов для обработки до того, как оценка будет признана завершенной. Если установлено значение None , оцениваются все экземпляры в наборе тестов.

class HParams(object):
  """Hyperparameters used for training."""
  def __init__(self):
    ### dataset parameters
    self.num_classes = 7
    self.max_seq_length = 1433
    ### neural graph learning parameters
    self.distance_type = nsl.configs.DistanceType.L2
    self.graph_regularization_multiplier = 0.1
    self.num_neighbors = 1
    ### model architecture
    self.num_fc_units = [50, 50]
    ### training parameters
    self.train_epochs = 100
    self.batch_size = 128
    self.dropout_rate = 0.5
    ### eval parameters
    self.eval_steps = None  # All instances in the test set are evaluated.

HPARAMS = HParams()

Загрузить данные о поездах и тестах

Как описано ранее в этой записной книжке, входные обучающие и тестовые данные были созданы файлом preprocess_cora_dataset.py . Мы загрузим их в два объектаtf.data.Dataset - один для поезда и один для тестирования.

На входном уровне нашей модели мы будем извлекать не только «слова» и «метки» из каждого образца, но также соответствующие соседние функции на hparams.num_neighbors значения hparams.num_neighbors . Экземплярам с меньшим количеством соседей, чем hparams.num_neighbors будут назначены фиктивные значения для этих несуществующих соседних объектов.

def make_dataset(file_path, training=False):
  """Creates a `tf.data.TFRecordDataset`.

  Args:
    file_path: Name of the file in the `.tfrecord` format containing
      `tf.train.Example` objects.
    training: Boolean indicating if we are in training mode.

  Returns:
    An instance of `tf.data.TFRecordDataset` containing the `tf.train.Example`
    objects.
  """

  def parse_example(example_proto):
    """Extracts relevant fields from the `example_proto`.

    Args:
      example_proto: An instance of `tf.train.Example`.

    Returns:
      A pair whose first value is a dictionary containing relevant features
      and whose second value contains the ground truth label.
    """
    # The 'words' feature is a multi-hot, bag-of-words representation of the
    # original raw text. A default value is required for examples that don't
    # have the feature.
    feature_spec = {
        'words':
            tf.io.FixedLenFeature([HPARAMS.max_seq_length],
                                  tf.int64,
                                  default_value=tf.constant(
                                      0,
                                      dtype=tf.int64,
                                      shape=[HPARAMS.max_seq_length])),
        'label':
            tf.io.FixedLenFeature((), tf.int64, default_value=-1),
    }
    # We also extract corresponding neighbor features in a similar manner to
    # the features above during training.
    if training:
      for i in range(HPARAMS.num_neighbors):
        nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, i, 'words')
        nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, i,
                                         NBR_WEIGHT_SUFFIX)
        feature_spec[nbr_feature_key] = tf.io.FixedLenFeature(
            [HPARAMS.max_seq_length],
            tf.int64,
            default_value=tf.constant(
                0, dtype=tf.int64, shape=[HPARAMS.max_seq_length]))

        # We assign a default value of 0.0 for the neighbor weight so that
        # graph regularization is done on samples based on their exact number
        # of neighbors. In other words, non-existent neighbors are discounted.
        feature_spec[nbr_weight_key] = tf.io.FixedLenFeature(
            [1], tf.float32, default_value=tf.constant([0.0]))

    features = tf.io.parse_single_example(example_proto, feature_spec)

    label = features.pop('label')
    return features, label

  dataset = tf.data.TFRecordDataset([file_path])
  if training:
    dataset = dataset.shuffle(10000)
  dataset = dataset.map(parse_example)
  dataset = dataset.batch(HPARAMS.batch_size)
  return dataset


train_dataset = make_dataset(TRAIN_DATA_PATH, training=True)
test_dataset = make_dataset(TEST_DATA_PATH)

Давайте заглянем в набор данных поезда, чтобы взглянуть на его содержимое.

for feature_batch, label_batch in train_dataset.take(1):
  print('Feature list:', list(feature_batch.keys()))
  print('Batch of inputs:', feature_batch['words'])
  nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, 0, 'words')
  nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, 0, NBR_WEIGHT_SUFFIX)
  print('Batch of neighbor inputs:', feature_batch[nbr_feature_key])
  print('Batch of neighbor weights:',
        tf.reshape(feature_batch[nbr_weight_key], [-1]))
  print('Batch of labels:', label_batch)
Feature list: ['NL_nbr_0_weight', 'NL_nbr_0_words', 'words']
Batch of inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of neighbor inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of neighbor weights: tf.Tensor(
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1.], shape=(128,), dtype=float32)
Batch of labels: tf.Tensor(
[4 3 1 2 1 6 2 5 6 2 2 6 5 0 2 2 1 6 2 2 2 2 5 4 2 0 2 1 1 2 0 5 2 2 2 0 2
 2 0 6 1 1 0 2 1 2 3 2 0 0 0 4 1 3 3 1 2 5 3 3 1 1 6 0 0 4 6 5 6 0 3 4 2 2
 2 3 3 2 4 0 2 3 2 2 3 1 2 2 1 0 6 1 2 1 6 2 1 0 4 3 2 5 2 3 1 0 3 4 3 4 1
 0 5 6 4 2 1 1 2 5 3 4 3 1 3 2 6 3], shape=(128,), dtype=int64)

Давайте заглянем в тестовый набор данных, чтобы посмотреть его содержимое.

for feature_batch, label_batch in test_dataset.take(1):
  print('Feature list:', list(feature_batch.keys()))
  print('Batch of inputs:', feature_batch['words'])
  print('Batch of labels:', label_batch)
Feature list: ['words']
Batch of inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of labels: tf.Tensor(
[5 2 2 2 1 2 6 3 2 3 6 1 3 6 4 4 2 3 3 0 2 0 5 2 1 0 6 3 6 4 2 2 3 0 4 2 2
 2 2 3 2 2 2 0 2 2 2 2 4 2 3 4 0 2 6 2 1 4 2 0 0 1 4 2 6 0 5 2 2 3 2 5 2 5
 2 3 2 2 2 2 2 6 6 3 2 4 2 6 3 2 2 6 2 4 2 2 1 3 4 6 0 0 2 4 2 1 3 6 6 2 6
 6 6 1 4 6 4 3 6 6 0 0 2 6 2 4 0 0], shape=(128,), dtype=int64)

Определение модели

Чтобы продемонстрировать использование регуляризации графа, мы сначала построим базовую модель для этой проблемы. Мы будем использовать простую нейронную сеть с прямой связью с двумя скрытыми слоями и промежуточными слоями. Мы проиллюстрируем создание базовой модели с использованием всех типов моделей, поддерживаемых фреймворком tf.Keras - последовательной, функциональной и подклассовой.

Последовательная базовая модель

def make_mlp_sequential_model(hparams):
  """Creates a sequential multi-layer perceptron model."""
  model = tf.keras.Sequential()
  model.add(
      tf.keras.layers.InputLayer(
          input_shape=(hparams.max_seq_length,), name='words'))
  # Input is already one-hot encoded in the integer format. We cast it to
  # floating point format here.
  model.add(
      tf.keras.layers.Lambda(lambda x: tf.keras.backend.cast(x, tf.float32)))
  for num_units in hparams.num_fc_units:
    model.add(tf.keras.layers.Dense(num_units, activation='relu'))
    # For sequential models, by default, Keras ensures that the 'dropout' layer
    # is invoked only during training.
    model.add(tf.keras.layers.Dropout(hparams.dropout_rate))
  model.add(tf.keras.layers.Dense(hparams.num_classes, activation='softmax'))
  return model

Функциональная базовая модель

def make_mlp_functional_model(hparams):
  """Creates a functional API-based multi-layer perceptron model."""
  inputs = tf.keras.Input(
      shape=(hparams.max_seq_length,), dtype='int64', name='words')

  # Input is already one-hot encoded in the integer format. We cast it to
  # floating point format here.
  cur_layer = tf.keras.layers.Lambda(
      lambda x: tf.keras.backend.cast(x, tf.float32))(
          inputs)

  for num_units in hparams.num_fc_units:
    cur_layer = tf.keras.layers.Dense(num_units, activation='relu')(cur_layer)
    # For functional models, by default, Keras ensures that the 'dropout' layer
    # is invoked only during training.
    cur_layer = tf.keras.layers.Dropout(hparams.dropout_rate)(cur_layer)

  outputs = tf.keras.layers.Dense(
      hparams.num_classes, activation='softmax')(
          cur_layer)

  model = tf.keras.Model(inputs, outputs=outputs)
  return model

Базовая модель подкласса

def make_mlp_subclass_model(hparams):
  """Creates a multi-layer perceptron subclass model in Keras."""

  class MLP(tf.keras.Model):
    """Subclass model defining a multi-layer perceptron."""

    def __init__(self):
      super(MLP, self).__init__()
      # Input is already one-hot encoded in the integer format. We create a
      # layer to cast it to floating point format here.
      self.cast_to_float_layer = tf.keras.layers.Lambda(
          lambda x: tf.keras.backend.cast(x, tf.float32))
      self.dense_layers = [
          tf.keras.layers.Dense(num_units, activation='relu')
          for num_units in hparams.num_fc_units
      ]
      self.dropout_layer = tf.keras.layers.Dropout(hparams.dropout_rate)
      self.output_layer = tf.keras.layers.Dense(
          hparams.num_classes, activation='softmax')

    def call(self, inputs, training=False):
      cur_layer = self.cast_to_float_layer(inputs['words'])
      for dense_layer in self.dense_layers:
        cur_layer = dense_layer(cur_layer)
        cur_layer = self.dropout_layer(cur_layer, training=training)

      outputs = self.output_layer(cur_layer)

      return outputs

  return MLP()

Создать базовую модель (ы)

# Create a base MLP model using the functional API.
# Alternatively, you can also create a sequential or subclass base model using
# the make_mlp_sequential_model() or make_mlp_subclass_model() functions
# respectively, defined above. Note that if a subclass model is used, its
# summary cannot be generated until it is built.
base_model_tag, base_model = 'FUNCTIONAL', make_mlp_functional_model(HPARAMS)
base_model.summary()
Model: "model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
words (InputLayer)           [(None, 1433)]            0         
_________________________________________________________________
lambda (Lambda)              (None, 1433)              0         
_________________________________________________________________
dense (Dense)                (None, 50)                71700     
_________________________________________________________________
dropout (Dropout)            (None, 50)                0         
_________________________________________________________________
dense_1 (Dense)              (None, 50)                2550      
_________________________________________________________________
dropout_1 (Dropout)          (None, 50)                0         
_________________________________________________________________
dense_2 (Dense)              (None, 7)                 357       
=================================================================
Total params: 74,607
Trainable params: 74,607
Non-trainable params: 0
_________________________________________________________________

Базовая модель поезда MLP

# Compile and train the base MLP model
base_model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy'])
base_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100
17/17 [==============================] - 0s 11ms/step - loss: 1.9256 - accuracy: 0.1870
Epoch 2/100
17/17 [==============================] - 0s 10ms/step - loss: 1.8410 - accuracy: 0.2835
Epoch 3/100
17/17 [==============================] - 0s 9ms/step - loss: 1.7479 - accuracy: 0.3374
Epoch 4/100
17/17 [==============================] - 0s 10ms/step - loss: 1.6384 - accuracy: 0.3884
Epoch 5/100
17/17 [==============================] - 0s 9ms/step - loss: 1.5086 - accuracy: 0.4390
Epoch 6/100
17/17 [==============================] - 0s 10ms/step - loss: 1.3606 - accuracy: 0.5016
Epoch 7/100
17/17 [==============================] - 0s 9ms/step - loss: 1.2165 - accuracy: 0.5791
Epoch 8/100
17/17 [==============================] - 0s 10ms/step - loss: 1.0783 - accuracy: 0.6311
Epoch 9/100
17/17 [==============================] - 0s 9ms/step - loss: 0.9552 - accuracy: 0.6947
Epoch 10/100
17/17 [==============================] - 0s 9ms/step - loss: 0.8680 - accuracy: 0.7090
Epoch 11/100
17/17 [==============================] - 0s 9ms/step - loss: 0.7915 - accuracy: 0.7425
Epoch 12/100
17/17 [==============================] - 0s 9ms/step - loss: 0.7124 - accuracy: 0.7773
Epoch 13/100
17/17 [==============================] - 0s 9ms/step - loss: 0.6582 - accuracy: 0.7907
Epoch 14/100
17/17 [==============================] - 0s 10ms/step - loss: 0.6021 - accuracy: 0.8065
Epoch 15/100
17/17 [==============================] - 0s 10ms/step - loss: 0.5416 - accuracy: 0.8325
Epoch 16/100
17/17 [==============================] - 0s 10ms/step - loss: 0.5042 - accuracy: 0.8473
Epoch 17/100
17/17 [==============================] - 0s 10ms/step - loss: 0.4433 - accuracy: 0.8761
Epoch 18/100
17/17 [==============================] - 0s 10ms/step - loss: 0.4310 - accuracy: 0.8640
Epoch 19/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3894 - accuracy: 0.8840
Epoch 20/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3676 - accuracy: 0.8891
Epoch 21/100
17/17 [==============================] - 0s 10ms/step - loss: 0.3576 - accuracy: 0.8812
Epoch 22/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3132 - accuracy: 0.9067
Epoch 23/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3058 - accuracy: 0.9142
Epoch 24/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2924 - accuracy: 0.9155
Epoch 25/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2769 - accuracy: 0.9197
Epoch 26/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2636 - accuracy: 0.9244
Epoch 27/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2429 - accuracy: 0.9313
Epoch 28/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2324 - accuracy: 0.9323
Epoch 29/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2285 - accuracy: 0.9346
Epoch 30/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2039 - accuracy: 0.9374
Epoch 31/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1943 - accuracy: 0.9471
Epoch 32/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1898 - accuracy: 0.9439
Epoch 33/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1879 - accuracy: 0.9425
Epoch 34/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1828 - accuracy: 0.9443
Epoch 35/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1635 - accuracy: 0.9541
Epoch 36/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1648 - accuracy: 0.9476
Epoch 37/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1603 - accuracy: 0.9499
Epoch 38/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1428 - accuracy: 0.9624
Epoch 39/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1483 - accuracy: 0.9601
Epoch 40/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1352 - accuracy: 0.9582
Epoch 41/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1379 - accuracy: 0.9555
Epoch 42/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1410 - accuracy: 0.9582
Epoch 43/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1198 - accuracy: 0.9684
Epoch 44/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1148 - accuracy: 0.9731
Epoch 45/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1228 - accuracy: 0.9657
Epoch 46/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1135 - accuracy: 0.9703
Epoch 47/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1134 - accuracy: 0.9661
Epoch 48/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1175 - accuracy: 0.9619
Epoch 49/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1002 - accuracy: 0.9703
Epoch 50/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1143 - accuracy: 0.9671
Epoch 51/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0923 - accuracy: 0.9777
Epoch 52/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1068 - accuracy: 0.9731
Epoch 53/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0972 - accuracy: 0.9712
Epoch 54/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0828 - accuracy: 0.9796
Epoch 55/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1036 - accuracy: 0.9703
Epoch 56/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0954 - accuracy: 0.9745
Epoch 57/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0883 - accuracy: 0.9768
Epoch 58/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0859 - accuracy: 0.9777
Epoch 59/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0856 - accuracy: 0.9759
Epoch 60/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0858 - accuracy: 0.9754
Epoch 61/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0848 - accuracy: 0.9726
Epoch 62/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0840 - accuracy: 0.9763
Epoch 63/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0770 - accuracy: 0.9805
Epoch 64/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0823 - accuracy: 0.9745
Epoch 65/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0665 - accuracy: 0.9828
Epoch 66/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0788 - accuracy: 0.9777
Epoch 67/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0690 - accuracy: 0.9800
Epoch 68/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0683 - accuracy: 0.9805
Epoch 69/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0615 - accuracy: 0.9838
Epoch 70/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0618 - accuracy: 0.9833
Epoch 71/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0659 - accuracy: 0.9810
Epoch 72/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0704 - accuracy: 0.9800
Epoch 73/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0645 - accuracy: 0.9814
Epoch 74/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0645 - accuracy: 0.9791
Epoch 75/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0638 - accuracy: 0.9791
Epoch 76/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0648 - accuracy: 0.9814
Epoch 77/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0591 - accuracy: 0.9838
Epoch 78/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0606 - accuracy: 0.9861
Epoch 79/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0699 - accuracy: 0.9814
Epoch 80/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0603 - accuracy: 0.9828
Epoch 81/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0629 - accuracy: 0.9828
Epoch 82/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0596 - accuracy: 0.9828
Epoch 83/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0542 - accuracy: 0.9828
Epoch 84/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0452 - accuracy: 0.9893
Epoch 85/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0551 - accuracy: 0.9838
Epoch 86/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0555 - accuracy: 0.9842
Epoch 87/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0514 - accuracy: 0.9824
Epoch 88/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0553 - accuracy: 0.9847
Epoch 89/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0475 - accuracy: 0.9884
Epoch 90/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0476 - accuracy: 0.9893
Epoch 91/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0427 - accuracy: 0.9903
Epoch 92/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0475 - accuracy: 0.9847
Epoch 93/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0423 - accuracy: 0.9893
Epoch 94/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0473 - accuracy: 0.9865
Epoch 95/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0560 - accuracy: 0.9819
Epoch 96/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0547 - accuracy: 0.9810
Epoch 97/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0576 - accuracy: 0.9814
Epoch 98/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0429 - accuracy: 0.9893
Epoch 99/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0440 - accuracy: 0.9875
Epoch 100/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0513 - accuracy: 0.9838
<tensorflow.python.keras.callbacks.History at 0x7fc47a3c78d0>

Оценить базовую модель MLP

# Helper function to print evaluation metrics.
def print_metrics(model_desc, eval_metrics):
  """Prints evaluation metrics.

  Args:
    model_desc: A description of the model.
    eval_metrics: A dictionary mapping metric names to corresponding values. It
      must contain the loss and accuracy metrics.
  """
  print('\n')
  print('Eval accuracy for ', model_desc, ': ', eval_metrics['accuracy'])
  print('Eval loss for ', model_desc, ': ', eval_metrics['loss'])
  if 'graph_loss' in eval_metrics:
    print('Eval graph loss for ', model_desc, ': ', eval_metrics['graph_loss'])
eval_results = dict(
    zip(base_model.metrics_names,
        base_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('Base MLP model', eval_results)
5/5 [==============================] - 0s 5ms/step - loss: 1.3380 - accuracy: 0.7740


Eval accuracy for  Base MLP model :  0.7739602327346802
Eval loss for  Base MLP model :  1.3379606008529663

Обучите модель MLP с регуляризацией графа

Включение регуляризации графа в срок потерь существующей tf.Keras.Model требует всего нескольких строк кода. Базовая модель обернута для создания новой tf.Keras подкласса tf.Keras , потеря которой включает регуляризацию графа.

Чтобы оценить дополнительные преимущества регуляризации графа, мы создадим новый экземпляр базовой модели. Это связано с тем, что base_model уже обучен для нескольких итераций, и повторное использование этой обученной модели для создания модели с регуляризацией графа не будет справедливым сравнением для base_model .

# Build a new base MLP model.
base_reg_model_tag, base_reg_model = 'FUNCTIONAL', make_mlp_functional_model(
    HPARAMS)
# Wrap the base MLP model with graph regularization.
graph_reg_config = nsl.configs.make_graph_reg_config(
    max_neighbors=HPARAMS.num_neighbors,
    multiplier=HPARAMS.graph_regularization_multiplier,
    distance_type=HPARAMS.distance_type,
    sum_over_axis=-1)
graph_reg_model = nsl.keras.GraphRegularization(base_reg_model,
                                                graph_reg_config)
graph_reg_model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy'])
graph_reg_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/framework/indexed_slices.py:434: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
17/17 [==============================] - 0s 10ms/step - loss: 1.9454 - accuracy: 0.1652 - graph_loss: 0.0076
Epoch 2/100
17/17 [==============================] - 0s 10ms/step - loss: 1.8517 - accuracy: 0.2956 - graph_loss: 0.0117
Epoch 3/100
17/17 [==============================] - 0s 10ms/step - loss: 1.7589 - accuracy: 0.3151 - graph_loss: 0.0261
Epoch 4/100
17/17 [==============================] - 0s 10ms/step - loss: 1.6714 - accuracy: 0.3392 - graph_loss: 0.0476
Epoch 5/100
17/17 [==============================] - 0s 9ms/step - loss: 1.5607 - accuracy: 0.4037 - graph_loss: 0.0622
Epoch 6/100
17/17 [==============================] - 0s 10ms/step - loss: 1.4486 - accuracy: 0.4807 - graph_loss: 0.0921
Epoch 7/100
17/17 [==============================] - 0s 10ms/step - loss: 1.3135 - accuracy: 0.5383 - graph_loss: 0.1236
Epoch 8/100
17/17 [==============================] - 0s 10ms/step - loss: 1.1902 - accuracy: 0.5912 - graph_loss: 0.1616
Epoch 9/100
17/17 [==============================] - 0s 10ms/step - loss: 1.0647 - accuracy: 0.6575 - graph_loss: 0.1920
Epoch 10/100
17/17 [==============================] - 0s 9ms/step - loss: 0.9416 - accuracy: 0.7067 - graph_loss: 0.2181
Epoch 11/100
17/17 [==============================] - 0s 10ms/step - loss: 0.8601 - accuracy: 0.7378 - graph_loss: 0.2470
Epoch 12/100
17/17 [==============================] - 0s 9ms/step - loss: 0.7968 - accuracy: 0.7462 - graph_loss: 0.2565
Epoch 13/100
17/17 [==============================] - 0s 10ms/step - loss: 0.6881 - accuracy: 0.7912 - graph_loss: 0.2681
Epoch 14/100
17/17 [==============================] - 0s 10ms/step - loss: 0.6548 - accuracy: 0.8139 - graph_loss: 0.2941
Epoch 15/100
17/17 [==============================] - 0s 10ms/step - loss: 0.5874 - accuracy: 0.8376 - graph_loss: 0.3010
Epoch 16/100
17/17 [==============================] - 0s 9ms/step - loss: 0.5537 - accuracy: 0.8348 - graph_loss: 0.3014
Epoch 17/100
17/17 [==============================] - 0s 10ms/step - loss: 0.5123 - accuracy: 0.8529 - graph_loss: 0.3097
Epoch 18/100
17/17 [==============================] - 0s 10ms/step - loss: 0.4771 - accuracy: 0.8640 - graph_loss: 0.3192
Epoch 19/100
17/17 [==============================] - 0s 10ms/step - loss: 0.4294 - accuracy: 0.8826 - graph_loss: 0.3182
Epoch 20/100
17/17 [==============================] - 0s 10ms/step - loss: 0.4109 - accuracy: 0.8854 - graph_loss: 0.3169
Epoch 21/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3901 - accuracy: 0.8965 - graph_loss: 0.3250
Epoch 22/100
17/17 [==============================] - 0s 9ms/step - loss: 0.3700 - accuracy: 0.8956 - graph_loss: 0.3349
Epoch 23/100
17/17 [==============================] - 0s 10ms/step - loss: 0.3716 - accuracy: 0.8974 - graph_loss: 0.3408
Epoch 24/100
17/17 [==============================] - 0s 10ms/step - loss: 0.3258 - accuracy: 0.9202 - graph_loss: 0.3361
Epoch 25/100
17/17 [==============================] - 0s 10ms/step - loss: 0.3043 - accuracy: 0.9253 - graph_loss: 0.3351
Epoch 26/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2919 - accuracy: 0.9253 - graph_loss: 0.3361
Epoch 27/100
17/17 [==============================] - 0s 10ms/step - loss: 0.3005 - accuracy: 0.9202 - graph_loss: 0.3249
Epoch 28/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2629 - accuracy: 0.9336 - graph_loss: 0.3442
Epoch 29/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2617 - accuracy: 0.9401 - graph_loss: 0.3302
Epoch 30/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2510 - accuracy: 0.9383 - graph_loss: 0.3436
Epoch 31/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2452 - accuracy: 0.9411 - graph_loss: 0.3364
Epoch 32/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2397 - accuracy: 0.9466 - graph_loss: 0.3333
Epoch 33/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2239 - accuracy: 0.9466 - graph_loss: 0.3373
Epoch 34/100
17/17 [==============================] - 0s 9ms/step - loss: 0.2084 - accuracy: 0.9513 - graph_loss: 0.3330
Epoch 35/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2075 - accuracy: 0.9499 - graph_loss: 0.3383
Epoch 36/100
17/17 [==============================] - 0s 10ms/step - loss: 0.2064 - accuracy: 0.9513 - graph_loss: 0.3394
Epoch 37/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1857 - accuracy: 0.9568 - graph_loss: 0.3371
Epoch 38/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1799 - accuracy: 0.9601 - graph_loss: 0.3477
Epoch 39/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1844 - accuracy: 0.9573 - graph_loss: 0.3385
Epoch 40/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1823 - accuracy: 0.9592 - graph_loss: 0.3445
Epoch 41/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1713 - accuracy: 0.9615 - graph_loss: 0.3451
Epoch 42/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1669 - accuracy: 0.9624 - graph_loss: 0.3398
Epoch 43/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1692 - accuracy: 0.9671 - graph_loss: 0.3483
Epoch 44/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1605 - accuracy: 0.9647 - graph_loss: 0.3437
Epoch 45/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1485 - accuracy: 0.9703 - graph_loss: 0.3338
Epoch 46/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1467 - accuracy: 0.9717 - graph_loss: 0.3405
Epoch 47/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1492 - accuracy: 0.9694 - graph_loss: 0.3466
Epoch 48/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1577 - accuracy: 0.9666 - graph_loss: 0.3338
Epoch 49/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1363 - accuracy: 0.9773 - graph_loss: 0.3424
Epoch 50/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1511 - accuracy: 0.9694 - graph_loss: 0.3402
Epoch 51/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1366 - accuracy: 0.9759 - graph_loss: 0.3385
Epoch 52/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1254 - accuracy: 0.9777 - graph_loss: 0.3474
Epoch 53/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1289 - accuracy: 0.9740 - graph_loss: 0.3469
Epoch 54/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1410 - accuracy: 0.9689 - graph_loss: 0.3475
Epoch 55/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1356 - accuracy: 0.9703 - graph_loss: 0.3483
Epoch 56/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1283 - accuracy: 0.9773 - graph_loss: 0.3412
Epoch 57/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1264 - accuracy: 0.9745 - graph_loss: 0.3473
Epoch 58/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1242 - accuracy: 0.9740 - graph_loss: 0.3443
Epoch 59/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1144 - accuracy: 0.9782 - graph_loss: 0.3440
Epoch 60/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1250 - accuracy: 0.9735 - graph_loss: 0.3357
Epoch 61/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1190 - accuracy: 0.9787 - graph_loss: 0.3400
Epoch 62/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1141 - accuracy: 0.9814 - graph_loss: 0.3419
Epoch 63/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1085 - accuracy: 0.9787 - graph_loss: 0.3395
Epoch 64/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1148 - accuracy: 0.9768 - graph_loss: 0.3504
Epoch 65/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1137 - accuracy: 0.9791 - graph_loss: 0.3360
Epoch 66/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1121 - accuracy: 0.9745 - graph_loss: 0.3469
Epoch 67/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1046 - accuracy: 0.9810 - graph_loss: 0.3476
Epoch 68/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1112 - accuracy: 0.9791 - graph_loss: 0.3431
Epoch 69/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1075 - accuracy: 0.9787 - graph_loss: 0.3455
Epoch 70/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0986 - accuracy: 0.9875 - graph_loss: 0.3403
Epoch 71/100
17/17 [==============================] - 0s 9ms/step - loss: 0.1141 - accuracy: 0.9782 - graph_loss: 0.3508
Epoch 72/100
17/17 [==============================] - 0s 10ms/step - loss: 0.1012 - accuracy: 0.9814 - graph_loss: 0.3453
Epoch 73/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0958 - accuracy: 0.9833 - graph_loss: 0.3430
Epoch 74/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0958 - accuracy: 0.9842 - graph_loss: 0.3447
Epoch 75/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0988 - accuracy: 0.9842 - graph_loss: 0.3430
Epoch 76/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0915 - accuracy: 0.9856 - graph_loss: 0.3475
Epoch 77/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0960 - accuracy: 0.9833 - graph_loss: 0.3353
Epoch 78/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0916 - accuracy: 0.9838 - graph_loss: 0.3441
Epoch 79/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0979 - accuracy: 0.9800 - graph_loss: 0.3476
Epoch 80/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0994 - accuracy: 0.9782 - graph_loss: 0.3400
Epoch 81/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0978 - accuracy: 0.9838 - graph_loss: 0.3386
Epoch 82/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0994 - accuracy: 0.9805 - graph_loss: 0.3416
Epoch 83/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0957 - accuracy: 0.9838 - graph_loss: 0.3398
Epoch 84/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0896 - accuracy: 0.9879 - graph_loss: 0.3379
Epoch 85/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0891 - accuracy: 0.9838 - graph_loss: 0.3441
Epoch 86/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0906 - accuracy: 0.9847 - graph_loss: 0.3445
Epoch 87/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0891 - accuracy: 0.9852 - graph_loss: 0.3506
Epoch 88/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0821 - accuracy: 0.9898 - graph_loss: 0.3448
Epoch 89/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0803 - accuracy: 0.9865 - graph_loss: 0.3370
Epoch 90/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0896 - accuracy: 0.9828 - graph_loss: 0.3428
Epoch 91/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0887 - accuracy: 0.9852 - graph_loss: 0.3505
Epoch 92/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0882 - accuracy: 0.9847 - graph_loss: 0.3396
Epoch 93/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0807 - accuracy: 0.9879 - graph_loss: 0.3473
Epoch 94/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0820 - accuracy: 0.9861 - graph_loss: 0.3367
Epoch 95/100
17/17 [==============================] - 0s 9ms/step - loss: 0.0864 - accuracy: 0.9838 - graph_loss: 0.3353
Epoch 96/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0786 - accuracy: 0.9889 - graph_loss: 0.3392
Epoch 97/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0735 - accuracy: 0.9912 - graph_loss: 0.3443
Epoch 98/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0861 - accuracy: 0.9842 - graph_loss: 0.3381
Epoch 99/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0850 - accuracy: 0.9833 - graph_loss: 0.3376
Epoch 100/100
17/17 [==============================] - 0s 10ms/step - loss: 0.0841 - accuracy: 0.9879 - graph_loss: 0.3510
<tensorflow.python.keras.callbacks.History at 0x7fc3d853ce10>

Оцените модель MLP с регуляризацией графа

eval_results = dict(
    zip(graph_reg_model.metrics_names,
        graph_reg_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('MLP + graph regularization', eval_results)
5/5 [==============================] - 0s 6ms/step - loss: 1.2475 - accuracy: 0.8192


Eval accuracy for  MLP + graph regularization :  0.8191681504249573
Eval loss for  MLP + graph regularization :  1.2474583387374878

Точность графо-регуляризованной модели примерно на 2-3% выше, чем у базовой модели ( base_model ).

Заключение

Мы продемонстрировали использование регуляризации графа для классификации документов на естественном графе цитирования (Cora) с помощью структуры нейронного структурированного обучения (NSL). Наш расширенный учебник включает синтез графов на основе встраиваемых образцов перед обучением нейронной сети с регуляризацией графов. Этот подход полезен, если входные данные не содержат явного графа.

Мы призываем пользователей к дальнейшим экспериментам, варьируя степень контроля, а также пробуя разные нейронные архитектуры для регуляризации графов.