ضوضاء

تنظيم صفحاتك في مجموعات يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.

عرض على TensorFlow.org تشغيل في Google Colab عرض المصدر على جيثب تحميل دفتر

الضوضاء موجودة في أجهزة الكمبيوتر الكمومية الحديثة. Qubits عرضة للتداخل من البيئة المحيطة ، والتصنيع غير الكامل ، و TLS وأحيانًا حتى أشعة جاما . حتى يتم الوصول إلى تصحيح الخطأ على نطاق واسع ، يجب أن تظل الخوارزميات الحالية قادرة على الاستمرار في العمل في ظل وجود ضوضاء. هذا يجعل اختبار الخوارزميات تحت الضوضاء خطوة مهمة للتحقق من صحة الخوارزميات / النماذج الكمية ستعمل على أجهزة الكمبيوتر الكمومية اليوم.

في هذا البرنامج التعليمي سوف تستكشف أساسيات محاكاة الدائرة الصاخبة في TFQ عبر واجهة برمجة تطبيقات tfq.layers عالية المستوى.

يثبت

pip install tensorflow==2.7.0 tensorflow-quantum
pip install -q git+https://github.com/tensorflow/docs
# Update package resources to account for version changes.
import importlib, pkg_resources
importlib.reload(pkg_resources)
<module 'pkg_resources' from '/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pkg_resources/__init__.py'>
import random
import cirq
import sympy
import tensorflow_quantum as tfq
import tensorflow as tf
import numpy as np
# Plotting
import matplotlib.pyplot as plt
import tensorflow_docs as tfdocs
import tensorflow_docs.plots
2022-02-04 12:35:30.853880: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

1. فهم ضوضاء الكم

1.1 ضوضاء الدائرة الأساسية

تؤثر الضوضاء على جهاز كمبيوتر كمي على عينات سلسلة البت التي يمكنك قياسها منها. إحدى الطرق البديهية التي يمكنك البدء في التفكير فيها هي أن الكمبيوتر الكمومي المزعج سوف "يدخل" أو "يحذف" أو "يستبدل" بوابات في أماكن عشوائية مثل الرسم البياني أدناه:

بناءً على هذا الحدس ، عند التعامل مع الضوضاء ، لم تعد تستخدم عنصرًا نائبًا واحدًا للحالة النقية \(|\psi \rangle\) ولكن بدلاً من ذلك تتعامل مع مجموعة من جميع الإدراكات الصاخبة الممكنة للدائرة التي تريدها: \(\rho = \sum_j p_j |\psi_j \rangle \langle \psi_j |\) . حيث يعطي \(p_j\) احتمال أن يكون النظام في \(|\psi_j \rangle\) .

إعادة النظر في الصورة أعلاه ، إذا علمنا مسبقًا أن 90٪ من الوقت كان يعمل نظامنا بشكل مثالي ، أو أخطأ 10٪ من الوقت مع هذا النمط الوحيد من الفشل ، فإن مجموعتنا ستكون:

\(\rho = 0.9 |\psi_\text{desired} \rangle \langle \psi_\text{desired}| + 0.1 |\psi_\text{noisy} \rangle \langle \psi_\text{noisy}| \)

إذا كان هناك أكثر من طريقة واحدة يمكن أن تخطئ بها دائرتنا ، فإن المجموعة \(\rho\) ستحتوي على أكثر من فترتين فقط (واحد لكل إدراك صاخب جديد يمكن أن يحدث). يشار إلى \(\rho\) بمصفوفة الكثافة التي تصف نظامك الصاخب.

1.2 استخدام القنوات لنمذجة ضوضاء الدائرة

لسوء الحظ من الناحية العملية يكاد يكون من المستحيل معرفة كل الطرق التي قد تخطئ بها دائرتك واحتمالاتها الدقيقة. من الافتراضات المبسطة التي يمكنك القيام بها هو أنه بعد كل عملية في دائرتك ، يوجد نوع من القنوات يلتقط تقريبًا كيفية حدوث خطأ في هذه العملية. يمكنك إنشاء دائرة بسرعة مع بعض الضوضاء:

def x_circuit(qubits):
  """Produces an X wall circuit on `qubits`."""
  return cirq.Circuit(cirq.X.on_each(*qubits))

def make_noisy(circuit, p):
  """Add a depolarization channel to all qubits in `circuit` before measurement."""
  return circuit + cirq.Circuit(cirq.depolarize(p).on_each(*circuit.all_qubits()))

my_qubits = cirq.GridQubit.rect(1, 2)
my_circuit = x_circuit(my_qubits)
my_noisy_circuit = make_noisy(my_circuit, 0.5)
my_circuit
my_noisy_circuit

يمكنك فحص المصفوفة \(\rho\) باستخدام:

rho = cirq.final_density_matrix(my_circuit)
np.round(rho, 3)
array([[0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j],
       [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]], dtype=complex64)

ومصفوفة الكثافة الصاخبة \(\rho\) مع:

rho = cirq.final_density_matrix(my_noisy_circuit)
np.round(rho, 3)
array([[0.111+0.j, 0.   +0.j, 0.   +0.j, 0.   +0.j],
       [0.   +0.j, 0.222+0.j, 0.   +0.j, 0.   +0.j],
       [0.   +0.j, 0.   +0.j, 0.222+0.j, 0.   +0.j],
       [0.   +0.j, 0.   +0.j, 0.   +0.j, 0.444+0.j]], dtype=complex64)

بمقارنة الاثنين المختلفين \( \rho \) ، يمكنك أن ترى أن الضوضاء قد أثرت على اتساع الحالة (وبالتالي احتمالات أخذ العينات). في الحالة الصامتة ، تتوقع دائمًا أخذ عينة من الحالة \( |11\rangle \) . ولكن في الحالة الصاخبة ، يوجد الآن احتمال غير صفري لأخذ عينات \( |00\rangle \) أو \( |01\rangle \) أو \( |10\rangle \) أيضاً:

"""Sample from my_noisy_circuit."""
def plot_samples(circuit):
  samples = cirq.sample(circuit + cirq.measure(*circuit.all_qubits(), key='bits'), repetitions=1000)
  freqs, _ = np.histogram(samples.data['bits'], bins=[i+0.01 for i in range(-1,2** len(my_qubits))])
  plt.figure(figsize=(10,5))
  plt.title('Noisy Circuit Sampling')
  plt.xlabel('Bitstring')
  plt.ylabel('Frequency')
  plt.bar([i for i in range(2** len(my_qubits))], freqs, tick_label=['00','01','10','11'])

plot_samples(my_noisy_circuit)

بي إن جي

بدون أي ضوضاء ، ستحصل دائمًا على \(|11\rangle\):

"""Sample from my_circuit."""
plot_samples(my_circuit)

بي إن جي

إذا قمت بزيادة الضوضاء أكثر قليلاً ، فسيكون من الصعب التمييز بين السلوك المطلوب (أخذ عينات \(|11\rangle\) ) من الضوضاء:

my_really_noisy_circuit = make_noisy(my_circuit, 0.75)
plot_samples(my_really_noisy_circuit)

بي إن جي

2. الضوضاء الأساسية في TFQ

من خلال هذا الفهم لكيفية تأثير الضوضاء على تنفيذ الدائرة ، يمكنك استكشاف كيفية عمل الضوضاء في TFQ. يستخدم TensorFlow Quantum محاكاة تعتمد على مونت كارلو / المسار كبديل لمحاكاة مصفوفة الكثافة. وذلك لأن تعقيد الذاكرة لمحاكاة مصفوفة الكثافة يحد من عمليات المحاكاة الكبيرة لتكون <= 20 كيوبت مع طرق محاكاة مصفوفة الكثافة الكاملة التقليدية. يتداول مونت كارلو / مسار هذه التكلفة في الذاكرة مقابل تكلفة إضافية في الوقت المناسب. backend='noisy' متاح لجميع tfq.layers.Sample و tfq.layers.SampledExpectation و tfq.layers.Expectation (في حالة Expectation هذا لا يضيف معلمة repetitions المطلوبة).

2.1 أخذ العينات الصاخبة في TFQ

لإعادة إنشاء المخططات أعلاه باستخدام TFQ ومحاكاة المسار ، يمكنك استخدام tfq.layers.Sample

"""Draw bitstring samples from `my_noisy_circuit`"""
bitstrings = tfq.layers.Sample(backend='noisy')(my_noisy_circuit, repetitions=1000)
numeric_values = np.einsum('ijk,k->ij', bitstrings.to_tensor().numpy(), [1, 2])[0]
freqs, _ = np.histogram(numeric_values, bins=[i+0.01 for i in range(-1,2** len(my_qubits))])
plt.figure(figsize=(10,5))
plt.title('Noisy Circuit Sampling')
plt.xlabel('Bitstring')
plt.ylabel('Frequency')
plt.bar([i for i in range(2** len(my_qubits))], freqs, tick_label=['00','01','10','11'])
<BarContainer object of 4 artists>

بي إن جي

2.2 عينة صاخبة على أساس التوقعات

للقيام بحساب توقع قائم على عينة صاخبة ، يمكنك استخدام tfq.layers.SampleExpectation :

some_observables = [cirq.X(my_qubits[0]), cirq.Z(my_qubits[0]), 3.0 * cirq.Y(my_qubits[1]) + 1]
some_observables
[cirq.X(cirq.GridQubit(0, 0)),
 cirq.Z(cirq.GridQubit(0, 0)),
 cirq.PauliSum(cirq.LinearDict({frozenset({(cirq.GridQubit(0, 1), cirq.Y)}): (3+0j), frozenset(): (1+0j)}))]

احسب تقديرات التوقعات الصامتة من خلال أخذ العينات من الدائرة:

noiseless_sampled_expectation = tfq.layers.SampledExpectation(backend='noiseless')(
    my_circuit, operators=some_observables, repetitions=10000
)
noiseless_sampled_expectation.numpy()
array([[-0.0028, -1.    ,  1.0264]], dtype=float32)

قارن هؤلاء مع الإصدارات الصاخبة:

noisy_sampled_expectation = tfq.layers.SampledExpectation(backend='noisy')(
    [my_noisy_circuit, my_really_noisy_circuit], operators=some_observables, repetitions=10000
)
noisy_sampled_expectation.numpy()
array([[ 0.0242    , -0.33200002,  1.0138001 ],
       [ 0.0108    , -0.0012    ,  0.9502    ]], dtype=float32)

يمكنك أن ترى أن الضوضاء قد أثرت بشكل خاص على دقة \(\langle \psi | Z | \psi \rangle\) ، مع تركيز my_really_noisy_circuit بسرعة كبيرة نحو 0.

2.3 حساب التوقعات التحليلية الصاخبة

إجراء حسابات التوقعات التحليلية الصاخبة مطابق تقريبًا لما ورد أعلاه:

noiseless_analytic_expectation = tfq.layers.Expectation(backend='noiseless')(
    my_circuit, operators=some_observables
)
noiseless_analytic_expectation.numpy()
array([[ 1.9106853e-15, -1.0000000e+00,  1.0000002e+00]], dtype=float32)
noisy_analytic_expectation = tfq.layers.Expectation(backend='noisy')(
    [my_noisy_circuit, my_really_noisy_circuit], operators=some_observables, repetitions=10000
)
noisy_analytic_expectation.numpy()
array([[ 1.9106850e-15, -3.3359998e-01,  1.0000000e+00],
       [ 1.9106857e-15, -3.8000005e-03,  1.0000001e+00]], dtype=float32)

3. النماذج الهجينة وضوضاء البيانات الكمومية

الآن بعد أن نفذت بعض عمليات محاكاة الدارات المزعجة في TFQ ، يمكنك تجربة كيفية تأثير الضوضاء على النماذج الكمومية والكمية الكلاسيكية الهجينة ، من خلال مقارنة وتباين أدائها الصاخب مقابل الأداء الصامت. أول فحص جيد لمعرفة ما إذا كان نموذج أو خوارزمية قوية في مواجهة الضوضاء هو الاختبار تحت نموذج إزالة الاستقطاب واسع الدائرة والذي يبدو كالتالي:

حيث تحتوي كل شريحة زمنية من الدائرة (يشار إليها أحيانًا باللحظة) على قناة إزالة الاستقطاب ملحقة بعد كل عملية بوابة في تلك الشريحة الزمنية. قناة إزالة الاستقطاب مع تطبيق واحد من \(\{X, Y, Z \}\) مع احتمال \(p\) أو لا تطبق شيئًا (احتفظ بالعملية الأصلية) مع احتمال \(1-p\).

3.1 البيانات

في هذا المثال ، يمكنك استخدام بعض الدوائر المعدة في وحدة tfq.datasets تدريب:

qubits = cirq.GridQubit.rect(1, 8)
circuits, labels, pauli_sums, _ = tfq.datasets.xxz_chain(qubits, 'closed')
circuits[0]
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/quantum/spin_systems/XXZ_chain.zip 
184451072/184449737 [==============================] - 2s 0us/step
184459264/184449737 [==============================] - 2s 0us/step

ستساعد كتابة دالة مساعدة صغيرة في إنشاء البيانات للحالة الصاخبة مقابل الصامتة:

def get_data(qubits, depolarize_p=0.):
  """Return quantum data circuits and labels in `tf.Tensor` form."""
  circuits, labels, pauli_sums, _ = tfq.datasets.xxz_chain(qubits, 'closed')
  if depolarize_p >= 1e-5:
    circuits = [circuit.with_noise(cirq.depolarize(depolarize_p)) for circuit in circuits]
  tmp = list(zip(circuits, labels))
  random.shuffle(tmp)
  circuits_tensor = tfq.convert_to_tensor([x[0] for x in tmp])
  labels_tensor = tf.convert_to_tensor([x[1] for x in tmp])

  return circuits_tensor, labels_tensor

3.2 تحديد نموذج الدائرة

الآن بعد أن أصبح لديك بيانات كمومية في شكل دوائر ، ستحتاج إلى دائرة لنمذجة هذه البيانات ، كما هو الحال مع البيانات ، يمكنك كتابة وظيفة مساعدة لتوليد هذه الدائرة التي تحتوي على ضوضاء اختياريًا:

def modelling_circuit(qubits, depth, depolarize_p=0.):
  """A simple classifier circuit."""
  dim = len(qubits)
  ret = cirq.Circuit(cirq.H.on_each(*qubits))

  for i in range(depth):
    # Entangle layer.
    ret += cirq.Circuit(cirq.CX(q1, q2) for (q1, q2) in zip(qubits[::2], qubits[1::2]))
    ret += cirq.Circuit(cirq.CX(q1, q2) for (q1, q2) in zip(qubits[1::2], qubits[2::2]))
    # Learnable rotation layer.
    # i_params = sympy.symbols(f'layer-{i}-0:{dim}')
    param = sympy.Symbol(f'layer-{i}')
    single_qb = cirq.X
    if i % 2 == 1:
      single_qb = cirq.Y
    ret += cirq.Circuit(single_qb(q) ** param for q in qubits)

  if depolarize_p >= 1e-5:
    ret = ret.with_noise(cirq.depolarize(depolarize_p))

  return ret, [op(q) for q in qubits for op in [cirq.X, cirq.Y, cirq.Z]]

modelling_circuit(qubits, 3)[0]

3.3 بناء النموذج والتدريب

مع بياناتك ودائرة النموذج الخاصة بك ، فإن الوظيفة المساعدة النهائية التي ستحتاج إليها هي تلك التي يمكنها تجميع tf.keras.Model الكم الهجين الصاخب أو الصامت.

def build_keras_model(qubits, depolarize_p=0.):
  """Prepare a noisy hybrid quantum classical Keras model."""
  spin_input = tf.keras.Input(shape=(), dtype=tf.dtypes.string)

  circuit_and_readout = modelling_circuit(qubits, 4, depolarize_p)
  if depolarize_p >= 1e-5:
    quantum_model = tfq.layers.NoisyPQC(*circuit_and_readout, sample_based=False, repetitions=10)(spin_input)
  else:
    quantum_model = tfq.layers.PQC(*circuit_and_readout)(spin_input)

  intermediate = tf.keras.layers.Dense(4, activation='sigmoid')(quantum_model)
  post_process = tf.keras.layers.Dense(1)(intermediate)

  return tf.keras.Model(inputs=[spin_input], outputs=[post_process])

4. قارن الأداء

4.1 خط الأساس الصامت

من خلال إنشاء البيانات وكود بناء النموذج ، يمكنك الآن مقارنة أداء النموذج وتباينه في الإعدادات الصامتة والصاخبة ، يمكنك أولاً تشغيل تدريب مرجعي بلا ضوضاء:

training_histories = dict()
depolarize_p = 0.
n_epochs = 50
phase_classifier = build_keras_model(qubits, depolarize_p)

phase_classifier.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.02),
                   loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                   metrics=['accuracy'])


# Show the keras plot of the model
tf.keras.utils.plot_model(phase_classifier, show_shapes=True, dpi=70)

بي إن جي

noiseless_data, noiseless_labels = get_data(qubits, depolarize_p)
training_histories['noiseless'] = phase_classifier.fit(x=noiseless_data,
                         y=noiseless_labels,
                         batch_size=16,
                         epochs=n_epochs,
                         validation_split=0.15,
                         verbose=1)
Epoch 1/50
4/4 [==============================] - 1s 133ms/step - loss: 0.7212 - accuracy: 0.4688 - val_loss: 0.6834 - val_accuracy: 0.5000
Epoch 2/50
4/4 [==============================] - 0s 80ms/step - loss: 0.6787 - accuracy: 0.4688 - val_loss: 0.6640 - val_accuracy: 0.5000
Epoch 3/50
4/4 [==============================] - 0s 76ms/step - loss: 0.6637 - accuracy: 0.4688 - val_loss: 0.6529 - val_accuracy: 0.5000
Epoch 4/50
4/4 [==============================] - 0s 78ms/step - loss: 0.6505 - accuracy: 0.4688 - val_loss: 0.6423 - val_accuracy: 0.5000
Epoch 5/50
4/4 [==============================] - 0s 77ms/step - loss: 0.6409 - accuracy: 0.4688 - val_loss: 0.6322 - val_accuracy: 0.5000
Epoch 6/50
4/4 [==============================] - 0s 77ms/step - loss: 0.6300 - accuracy: 0.4844 - val_loss: 0.6187 - val_accuracy: 0.5000
Epoch 7/50
4/4 [==============================] - 0s 77ms/step - loss: 0.6171 - accuracy: 0.5781 - val_loss: 0.6007 - val_accuracy: 0.5000
Epoch 8/50
4/4 [==============================] - 0s 79ms/step - loss: 0.6008 - accuracy: 0.6250 - val_loss: 0.5825 - val_accuracy: 0.5833
Epoch 9/50
4/4 [==============================] - 0s 76ms/step - loss: 0.5864 - accuracy: 0.6406 - val_loss: 0.5610 - val_accuracy: 0.6667
Epoch 10/50
4/4 [==============================] - 0s 77ms/step - loss: 0.5670 - accuracy: 0.6719 - val_loss: 0.5406 - val_accuracy: 0.8333
Epoch 11/50
4/4 [==============================] - 0s 79ms/step - loss: 0.5474 - accuracy: 0.6875 - val_loss: 0.5173 - val_accuracy: 0.9167
Epoch 12/50
4/4 [==============================] - 0s 77ms/step - loss: 0.5276 - accuracy: 0.7188 - val_loss: 0.4941 - val_accuracy: 0.9167
Epoch 13/50
4/4 [==============================] - 0s 75ms/step - loss: 0.5066 - accuracy: 0.7500 - val_loss: 0.4686 - val_accuracy: 0.9167
Epoch 14/50
4/4 [==============================] - 0s 76ms/step - loss: 0.4838 - accuracy: 0.7812 - val_loss: 0.4437 - val_accuracy: 0.9167
Epoch 15/50
4/4 [==============================] - 0s 76ms/step - loss: 0.4618 - accuracy: 0.8281 - val_loss: 0.4182 - val_accuracy: 0.9167
Epoch 16/50
4/4 [==============================] - 0s 76ms/step - loss: 0.4386 - accuracy: 0.8281 - val_loss: 0.3930 - val_accuracy: 1.0000
Epoch 17/50
4/4 [==============================] - 0s 79ms/step - loss: 0.4158 - accuracy: 0.8438 - val_loss: 0.3673 - val_accuracy: 1.0000
Epoch 18/50
4/4 [==============================] - 0s 79ms/step - loss: 0.3944 - accuracy: 0.8438 - val_loss: 0.3429 - val_accuracy: 1.0000
Epoch 19/50
4/4 [==============================] - 0s 77ms/step - loss: 0.3735 - accuracy: 0.8594 - val_loss: 0.3203 - val_accuracy: 1.0000
Epoch 20/50
4/4 [==============================] - 0s 77ms/step - loss: 0.3535 - accuracy: 0.8750 - val_loss: 0.2998 - val_accuracy: 1.0000
Epoch 21/50
4/4 [==============================] - 0s 78ms/step - loss: 0.3345 - accuracy: 0.8906 - val_loss: 0.2815 - val_accuracy: 1.0000
Epoch 22/50
4/4 [==============================] - 0s 76ms/step - loss: 0.3168 - accuracy: 0.8906 - val_loss: 0.2640 - val_accuracy: 1.0000
Epoch 23/50
4/4 [==============================] - 0s 76ms/step - loss: 0.3017 - accuracy: 0.9062 - val_loss: 0.2465 - val_accuracy: 1.0000
Epoch 24/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2840 - accuracy: 0.9219 - val_loss: 0.2328 - val_accuracy: 1.0000
Epoch 25/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2700 - accuracy: 0.9219 - val_loss: 0.2181 - val_accuracy: 1.0000
Epoch 26/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2566 - accuracy: 0.9219 - val_loss: 0.2053 - val_accuracy: 1.0000
Epoch 27/50
4/4 [==============================] - 0s 77ms/step - loss: 0.2445 - accuracy: 0.9375 - val_loss: 0.1935 - val_accuracy: 1.0000
Epoch 28/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2332 - accuracy: 0.9375 - val_loss: 0.1839 - val_accuracy: 1.0000
Epoch 29/50
4/4 [==============================] - 0s 78ms/step - loss: 0.2227 - accuracy: 0.9375 - val_loss: 0.1734 - val_accuracy: 1.0000
Epoch 30/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2145 - accuracy: 0.9375 - val_loss: 0.1630 - val_accuracy: 1.0000
Epoch 31/50
4/4 [==============================] - 0s 76ms/step - loss: 0.2047 - accuracy: 0.9375 - val_loss: 0.1564 - val_accuracy: 1.0000
Epoch 32/50
4/4 [==============================] - 0s 76ms/step - loss: 0.1971 - accuracy: 0.9375 - val_loss: 0.1525 - val_accuracy: 1.0000
Epoch 33/50
4/4 [==============================] - 0s 75ms/step - loss: 0.1894 - accuracy: 0.9531 - val_loss: 0.1464 - val_accuracy: 1.0000
Epoch 34/50
4/4 [==============================] - 0s 74ms/step - loss: 0.1825 - accuracy: 0.9531 - val_loss: 0.1407 - val_accuracy: 1.0000
Epoch 35/50
4/4 [==============================] - 0s 77ms/step - loss: 0.1771 - accuracy: 0.9531 - val_loss: 0.1330 - val_accuracy: 1.0000
Epoch 36/50
4/4 [==============================] - 0s 75ms/step - loss: 0.1704 - accuracy: 0.9531 - val_loss: 0.1288 - val_accuracy: 1.0000
Epoch 37/50
4/4 [==============================] - 0s 76ms/step - loss: 0.1647 - accuracy: 0.9531 - val_loss: 0.1237 - val_accuracy: 1.0000
Epoch 38/50
4/4 [==============================] - 0s 80ms/step - loss: 0.1603 - accuracy: 0.9531 - val_loss: 0.1221 - val_accuracy: 1.0000
Epoch 39/50
4/4 [==============================] - 0s 76ms/step - loss: 0.1551 - accuracy: 0.9688 - val_loss: 0.1177 - val_accuracy: 1.0000
Epoch 40/50
4/4 [==============================] - 0s 75ms/step - loss: 0.1509 - accuracy: 0.9688 - val_loss: 0.1136 - val_accuracy: 1.0000
Epoch 41/50
4/4 [==============================] - 0s 76ms/step - loss: 0.1466 - accuracy: 0.9688 - val_loss: 0.1110 - val_accuracy: 1.0000
Epoch 42/50
4/4 [==============================] - 0s 76ms/step - loss: 0.1426 - accuracy: 0.9688 - val_loss: 0.1083 - val_accuracy: 1.0000
Epoch 43/50
4/4 [==============================] - 0s 75ms/step - loss: 0.1386 - accuracy: 0.9688 - val_loss: 0.1050 - val_accuracy: 1.0000
Epoch 44/50
4/4 [==============================] - 0s 83ms/step - loss: 0.1362 - accuracy: 0.9688 - val_loss: 0.0989 - val_accuracy: 1.0000
Epoch 45/50
4/4 [==============================] - 0s 78ms/step - loss: 0.1324 - accuracy: 0.9688 - val_loss: 0.0978 - val_accuracy: 1.0000
Epoch 46/50
4/4 [==============================] - 0s 77ms/step - loss: 0.1290 - accuracy: 0.9688 - val_loss: 0.0964 - val_accuracy: 1.0000
Epoch 47/50
4/4 [==============================] - 0s 75ms/step - loss: 0.1265 - accuracy: 0.9688 - val_loss: 0.0929 - val_accuracy: 1.0000
Epoch 48/50
4/4 [==============================] - 0s 77ms/step - loss: 0.1234 - accuracy: 0.9688 - val_loss: 0.0923 - val_accuracy: 1.0000
Epoch 49/50
4/4 [==============================] - 0s 77ms/step - loss: 0.1213 - accuracy: 0.9688 - val_loss: 0.0903 - val_accuracy: 1.0000
Epoch 50/50
4/4 [==============================] - 0s 77ms/step - loss: 0.1182 - accuracy: 0.9688 - val_loss: 0.0885 - val_accuracy: 1.0000

واستكشف النتائج ودقتها:

loss_plotter = tfdocs.plots.HistoryPlotter(metric = 'loss', smoothing_std=10)
loss_plotter.plot(training_histories)

بي إن جي

acc_plotter = tfdocs.plots.HistoryPlotter(metric = 'accuracy', smoothing_std=10)
acc_plotter.plot(training_histories)

بي إن جي

4.2 مقارنة صاخبة

يمكنك الآن بناء نموذج جديد بهيكل مزعج ومقارنته بما ورد أعلاه ، فإن الكود متطابق تقريبًا:

depolarize_p = 0.001
n_epochs = 50
noisy_phase_classifier = build_keras_model(qubits, depolarize_p)

noisy_phase_classifier.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.02),
                   loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
                   metrics=['accuracy'])


# Show the keras plot of the model
tf.keras.utils.plot_model(noisy_phase_classifier, show_shapes=True, dpi=70)

بي إن جي

noisy_data, noisy_labels = get_data(qubits, depolarize_p)
training_histories['noisy'] = noisy_phase_classifier.fit(x=noisy_data,
                         y=noisy_labels,
                         batch_size=16,
                         epochs=n_epochs,
                         validation_split=0.15,
                         verbose=1)
Epoch 1/50
4/4 [==============================] - 8s 2s/step - loss: 0.8265 - accuracy: 0.4844 - val_loss: 0.8369 - val_accuracy: 0.4167
Epoch 2/50
4/4 [==============================] - 7s 2s/step - loss: 0.7613 - accuracy: 0.4844 - val_loss: 0.7695 - val_accuracy: 0.4167
Epoch 3/50
4/4 [==============================] - 7s 2s/step - loss: 0.7151 - accuracy: 0.4844 - val_loss: 0.7290 - val_accuracy: 0.4167
Epoch 4/50
4/4 [==============================] - 7s 2s/step - loss: 0.6915 - accuracy: 0.4844 - val_loss: 0.7014 - val_accuracy: 0.4167
Epoch 5/50
4/4 [==============================] - 7s 2s/step - loss: 0.6837 - accuracy: 0.4844 - val_loss: 0.6811 - val_accuracy: 0.4167
Epoch 6/50
4/4 [==============================] - 7s 2s/step - loss: 0.6717 - accuracy: 0.4844 - val_loss: 0.6801 - val_accuracy: 0.4167
Epoch 7/50
4/4 [==============================] - 7s 2s/step - loss: 0.6739 - accuracy: 0.4844 - val_loss: 0.6726 - val_accuracy: 0.4167
Epoch 8/50
4/4 [==============================] - 7s 2s/step - loss: 0.6713 - accuracy: 0.4844 - val_loss: 0.6661 - val_accuracy: 0.4167
Epoch 9/50
4/4 [==============================] - 7s 2s/step - loss: 0.6710 - accuracy: 0.4844 - val_loss: 0.6667 - val_accuracy: 0.4167
Epoch 10/50
4/4 [==============================] - 7s 2s/step - loss: 0.6669 - accuracy: 0.4844 - val_loss: 0.6627 - val_accuracy: 0.4167
Epoch 11/50
4/4 [==============================] - 7s 2s/step - loss: 0.6637 - accuracy: 0.4844 - val_loss: 0.6550 - val_accuracy: 0.4167
Epoch 12/50
4/4 [==============================] - 7s 2s/step - loss: 0.6616 - accuracy: 0.4844 - val_loss: 0.6593 - val_accuracy: 0.4167
Epoch 13/50
4/4 [==============================] - 7s 2s/step - loss: 0.6536 - accuracy: 0.4844 - val_loss: 0.6514 - val_accuracy: 0.4167
Epoch 14/50
4/4 [==============================] - 7s 2s/step - loss: 0.6489 - accuracy: 0.4844 - val_loss: 0.6481 - val_accuracy: 0.4167
Epoch 15/50
4/4 [==============================] - 7s 2s/step - loss: 0.6491 - accuracy: 0.4844 - val_loss: 0.6484 - val_accuracy: 0.4167
Epoch 16/50
4/4 [==============================] - 7s 2s/step - loss: 0.6389 - accuracy: 0.4844 - val_loss: 0.6396 - val_accuracy: 0.4167
Epoch 17/50
4/4 [==============================] - 7s 2s/step - loss: 0.6307 - accuracy: 0.4844 - val_loss: 0.6337 - val_accuracy: 0.4167
Epoch 18/50
4/4 [==============================] - 7s 2s/step - loss: 0.6296 - accuracy: 0.4844 - val_loss: 0.6260 - val_accuracy: 0.4167
Epoch 19/50
4/4 [==============================] - 7s 2s/step - loss: 0.6194 - accuracy: 0.4844 - val_loss: 0.6282 - val_accuracy: 0.4167
Epoch 20/50
4/4 [==============================] - 7s 2s/step - loss: 0.6095 - accuracy: 0.4844 - val_loss: 0.6138 - val_accuracy: 0.4167
Epoch 21/50
4/4 [==============================] - 7s 2s/step - loss: 0.6075 - accuracy: 0.4844 - val_loss: 0.5874 - val_accuracy: 0.4167
Epoch 22/50
4/4 [==============================] - 7s 2s/step - loss: 0.5981 - accuracy: 0.4844 - val_loss: 0.5981 - val_accuracy: 0.4167
Epoch 23/50
4/4 [==============================] - 7s 2s/step - loss: 0.5823 - accuracy: 0.4844 - val_loss: 0.5818 - val_accuracy: 0.4167
Epoch 24/50
4/4 [==============================] - 7s 2s/step - loss: 0.5768 - accuracy: 0.4844 - val_loss: 0.5617 - val_accuracy: 0.4167
Epoch 25/50
4/4 [==============================] - 7s 2s/step - loss: 0.5651 - accuracy: 0.4844 - val_loss: 0.5638 - val_accuracy: 0.4167
Epoch 26/50
4/4 [==============================] - 7s 2s/step - loss: 0.5496 - accuracy: 0.4844 - val_loss: 0.5532 - val_accuracy: 0.4167
Epoch 27/50
4/4 [==============================] - 7s 2s/step - loss: 0.5340 - accuracy: 0.5000 - val_loss: 0.5345 - val_accuracy: 0.4167
Epoch 28/50
4/4 [==============================] - 7s 2s/step - loss: 0.5297 - accuracy: 0.5156 - val_loss: 0.5308 - val_accuracy: 0.4167
Epoch 29/50
4/4 [==============================] - 7s 2s/step - loss: 0.5120 - accuracy: 0.5312 - val_loss: 0.5224 - val_accuracy: 0.5000
Epoch 30/50
4/4 [==============================] - 7s 2s/step - loss: 0.4992 - accuracy: 0.5781 - val_loss: 0.4921 - val_accuracy: 0.5833
Epoch 31/50
4/4 [==============================] - 7s 2s/step - loss: 0.4823 - accuracy: 0.5938 - val_loss: 0.4975 - val_accuracy: 0.5000
Epoch 32/50
4/4 [==============================] - 7s 2s/step - loss: 0.5025 - accuracy: 0.5781 - val_loss: 0.4814 - val_accuracy: 0.5000
Epoch 33/50
4/4 [==============================] - 7s 2s/step - loss: 0.4655 - accuracy: 0.6562 - val_loss: 0.4391 - val_accuracy: 0.6667
Epoch 34/50
4/4 [==============================] - 7s 2s/step - loss: 0.4552 - accuracy: 0.7031 - val_loss: 0.4528 - val_accuracy: 0.5833
Epoch 35/50
4/4 [==============================] - 7s 2s/step - loss: 0.4516 - accuracy: 0.6719 - val_loss: 0.3993 - val_accuracy: 0.8333
Epoch 36/50
4/4 [==============================] - 7s 2s/step - loss: 0.4320 - accuracy: 0.7656 - val_loss: 0.4225 - val_accuracy: 0.6667
Epoch 37/50
4/4 [==============================] - 7s 2s/step - loss: 0.4060 - accuracy: 0.7656 - val_loss: 0.4001 - val_accuracy: 0.9167
Epoch 38/50
4/4 [==============================] - 7s 2s/step - loss: 0.3858 - accuracy: 0.7812 - val_loss: 0.4152 - val_accuracy: 0.8333
Epoch 39/50
4/4 [==============================] - 7s 2s/step - loss: 0.3964 - accuracy: 0.7656 - val_loss: 0.3899 - val_accuracy: 0.7500
Epoch 40/50
4/4 [==============================] - 7s 2s/step - loss: 0.3640 - accuracy: 0.8125 - val_loss: 0.3689 - val_accuracy: 0.7500
Epoch 41/50
4/4 [==============================] - 7s 2s/step - loss: 0.3676 - accuracy: 0.7812 - val_loss: 0.3786 - val_accuracy: 0.7500
Epoch 42/50
4/4 [==============================] - 7s 2s/step - loss: 0.3466 - accuracy: 0.8281 - val_loss: 0.3313 - val_accuracy: 0.8333
Epoch 43/50
4/4 [==============================] - 7s 2s/step - loss: 0.3520 - accuracy: 0.8594 - val_loss: 0.3398 - val_accuracy: 0.8333
Epoch 44/50
4/4 [==============================] - 7s 2s/step - loss: 0.3402 - accuracy: 0.8438 - val_loss: 0.3135 - val_accuracy: 0.9167
Epoch 45/50
4/4 [==============================] - 7s 2s/step - loss: 0.3253 - accuracy: 0.8281 - val_loss: 0.3469 - val_accuracy: 0.8333
Epoch 46/50
4/4 [==============================] - 7s 2s/step - loss: 0.3239 - accuracy: 0.8281 - val_loss: 0.3038 - val_accuracy: 0.9167
Epoch 47/50
4/4 [==============================] - 7s 2s/step - loss: 0.2948 - accuracy: 0.8594 - val_loss: 0.3056 - val_accuracy: 0.9167
Epoch 48/50
4/4 [==============================] - 7s 2s/step - loss: 0.2972 - accuracy: 0.9219 - val_loss: 0.2699 - val_accuracy: 0.9167
Epoch 49/50
4/4 [==============================] - 7s 2s/step - loss: 0.3041 - accuracy: 0.8281 - val_loss: 0.2754 - val_accuracy: 0.9167
Epoch 50/50
4/4 [==============================] - 7s 2s/step - loss: 0.2944 - accuracy: 0.8750 - val_loss: 0.2988 - val_accuracy: 0.9167
loss_plotter.plot(training_histories)

بي إن جي

acc_plotter.plot(training_histories)

بي إن جي