Unisciti alla community di SIG TFX-Addons e aiutaci a rendere TFX ancora migliore! Iscriviti a SIG TFX-Addons

Esercitazione sul componente TFX Keras

Un'introduzione componente per componente a TensorFlow Extended (TFX)

Questo tutorial basato su Colab illustrerà in modo interattivo ogni componente integrato di TensorFlow Extended (TFX).

Copre ogni fase di una pipeline di machine learning end-to-end, dall'acquisizione dei dati al push di un modello alla pubblicazione.

Quando hai finito, il contenuto di questo notebook può essere esportato automaticamente come codice sorgente della pipeline TFX, che puoi orchestrare con Apache Airflow e Apache Beam.

Sfondo

Questo notebook mostra come utilizzare TFX in un ambiente Jupyter/Colab. Qui, esaminiamo l'esempio di Chicago Taxi in un taccuino interattivo.

Lavorare in un notebook interattivo è un modo utile per familiarizzare con la struttura di una pipeline TFX. È anche utile quando si esegue lo sviluppo delle proprie pipeline come un ambiente di sviluppo leggero, ma è necessario essere consapevoli che esistono differenze nel modo in cui i notebook interattivi sono orchestrati e nel modo in cui accedono agli artefatti dei metadati.

Orchestrazione

In una distribuzione di produzione di TFX, utilizzerai un orchestratore come Apache Airflow, Kubeflow Pipelines o Apache Beam per orchestrare un grafico di pipeline predefinito dei componenti TFX. In un notebook interattivo, il notebook stesso è l'orchestratore, che esegue ogni componente TFX mentre si eseguono le celle del notebook.

Metadati

In una distribuzione di produzione di TFX, accederai ai metadati tramite l'API ML Metadata (MLMD). MLMD archivia le proprietà dei metadati in un database come MySQL o SQLite e archivia i payload dei metadati in un archivio persistente come nel file system. In un quaderno interattivo, entrambe le proprietà e carichi utili sono memorizzati in un database SQLite effimera nella /tmp directory sul notebook o sul server Jupyter Colab.

Impostare

Innanzitutto, installiamo e importiamo i pacchetti necessari, impostiamo percorsi e scarichiamo i dati.

Aggiorna Pip

Per evitare di aggiornare Pip in un sistema durante l'esecuzione in locale, assicurati che sia in esecuzione in Colab. I sistemi locali possono ovviamente essere aggiornati separatamente.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Installa TFX

pip install -U tfx

Hai riavviato il runtime?

Se stai utilizzando Google Colab, la prima volta che esegui la cella sopra, devi riavviare il runtime (Runtime > Riavvia runtime...). Ciò è dovuto al modo in cui Colab carica i pacchetti.

Importa pacchetti

Importiamo i pacchetti necessari, incluse le classi di componenti TFX standard.

import os
import pprint
import tempfile
import urllib

import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()

from tfx import v1 as tfx
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext

%load_ext tfx.orchestration.experimental.interactive.notebook_extensions.skip
2021-07-27 09:07:32.686219: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0

Controlliamo le versioni della libreria.

print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.5.0
TFX version: 1.0.0

Imposta i percorsi della pipeline

# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__[0]

# This is the directory containing the TFX Chicago Taxi Pipeline example.
_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_pipeline')

# This is the path where your model will be pushed for serving.
_serving_model_dir = os.path.join(
    tempfile.mkdtemp(), 'serving_model/taxi_simple')

# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)

Scarica dati di esempio

Scarichiamo il set di dati di esempio per l'utilizzo nella nostra pipeline TFX.

Il set di dati che stiamo utilizzando è il taxi Trips set di dati rilasciato dal Comune di Chicago. Le colonne in questo set di dati sono:

pick-up_community_area tariffa trip_start_month
trip_start_hour trip_start_day trip_start_timestamp
pickup_latitude pickup_longitude dropoff_latitude
dropoff_longitude viaggio_miglia pickup_census_tract
dropoff_census_tract modalità di pagamento società
trip_seconds dropoff_community_area suggerimenti

Con questo set di dati, costruiremo un modello che prevede le tips di un viaggio.

_data_root = tempfile.mkdtemp(prefix='tfx-data')
DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
('/tmp/tfx-datazpmc_2k0/data.csv', <http.client.HTTPMessage at 0x7f29e4316290>)

Dai una rapida occhiata al file CSV.

head {_data_filepath}
pickup_community_area,fare,trip_start_month,trip_start_hour,trip_start_day,trip_start_timestamp,pickup_latitude,pickup_longitude,dropoff_latitude,dropoff_longitude,trip_miles,pickup_census_tract,dropoff_census_tract,payment_type,company,trip_seconds,dropoff_community_area,tips
,12.45,5,19,6,1400269500,,,,,0.0,,,Credit Card,Chicago Elite Cab Corp. (Chicago Carriag,0,,0.0
,0,3,19,5,1362683700,,,,,0,,,Unknown,Chicago Elite Cab Corp.,300,,0
60,27.05,10,2,3,1380593700,41.836150155,-87.648787952,,,12.6,,,Cash,Taxi Affiliation Services,1380,,0.0
10,5.85,10,1,2,1382319000,41.985015101,-87.804532006,,,0.0,,,Cash,Taxi Affiliation Services,180,,0.0
14,16.65,5,7,5,1369897200,41.968069,-87.721559063,,,0.0,,,Cash,Dispatch Taxi Affiliation,1080,,0.0
13,16.45,11,12,3,1446554700,41.983636307,-87.723583185,,,6.9,,,Cash,,780,,0.0
16,32.05,12,1,1,1417916700,41.953582125,-87.72345239,,,15.4,,,Cash,,1200,,0.0
30,38.45,10,10,5,1444301100,41.839086906,-87.714003807,,,14.6,,,Cash,,2580,,0.0
11,14.65,1,1,3,1358213400,41.978829526,-87.771166703,,,5.81,,,Cash,,1080,,0.0

Dichiarazione di non responsabilità: questo sito fornisce applicazioni che utilizzano dati modificati per l'uso dalla fonte originale, www.cityofchicago.org, il sito Web ufficiale della città di Chicago. La città di Chicago non rivendica il contenuto, l'accuratezza, la tempestività o la completezza dei dati forniti in questo sito. I dati forniti in questo sito sono soggetti a modifica in qualsiasi momento. Resta inteso che i dati forniti in questo sito vengono utilizzati a proprio rischio.

Crea il contesto interattivo

Infine, creiamo un InteractiveContext, che ci consentirà di eseguire i componenti TFX in modo interattivo in questo notebook.

# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/metadata.sqlite.

Esegui i componenti TFX in modo interattivo

Nelle celle che seguono, creiamo i componenti TFX uno per uno, eseguiamo ciascuno di essi e visualizziamo i loro artefatti di output.

EsempioGen

ExampleGen componente è di solito all'inizio di un oleodotto TFX. Lo farà:

  1. Dividi i dati in set di formazione e valutazione (per impostazione predefinita, 2/3 di formazione + 1/3 di valutazione)
  2. I dati convertendoli in tf.Example formato (ulteriori informazioni qui )
  3. Copiare i dati nella _tfx_root directory per altri componenti per l'accesso

ExampleGen prende come input il percorso per l'origine dati. Nel nostro caso, questo è il _data_root percorso che contiene il CSV scaricato.

example_gen = tfx.components.CsvExampleGen(input_base=_data_root)
context.run(example_gen)
INFO:absl:Running driver for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:Running executor for CsvExampleGen
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-datazpmc_2k0/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Running publisher for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di ExampleGen . Questo componente produce due artefatti, esempi di formazione ed esempi di valutazione:

artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/CsvExampleGen/examples/1

Possiamo anche dare un'occhiata ai primi tre esempi di formazione:

# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Chicago Elite Cab Corp. (Chicago Carriag"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 12.449999809265137
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Credit Card"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1400269500
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Taxi Affiliation Services"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 27.049999237060547
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.836151123046875
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.64878845214844
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 12.600000381469727
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 1380
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1380593700
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 16.450000762939453
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.98363494873047
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.72357940673828
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 6.900000095367432
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 780
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1446554700
      }
    }
  }
}
2021-07-27 09:07:45.320714: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2021-07-27 09:07:46.182366: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.183343: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:00:05.0 name: Tesla V100-SXM2-16GB computeCapability: 7.0
coreClock: 1.53GHz coreCount: 80 deviceMemorySize: 15.78GiB deviceMemoryBandwidth: 836.37GiB/s
2021-07-27 09:07:46.183380: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2021-07-27 09:07:46.186392: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
2021-07-27 09:07:46.186495: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
2021-07-27 09:07:46.187463: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcufft.so.10
2021-07-27 09:07:46.187792: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcurand.so.10
2021-07-27 09:07:46.188571: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusolver.so.11
2021-07-27 09:07:46.189318: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcusparse.so.11
2021-07-27 09:07:46.189509: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudnn.so.8
2021-07-27 09:07:46.189639: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.190658: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.191561: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2021-07-27 09:07:46.192211: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-07-27 09:07:46.192702: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.193636: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1733] Found device 0 with properties: 
pciBusID: 0000:00:05.0 name: Tesla V100-SXM2-16GB computeCapability: 7.0
coreClock: 1.53GHz coreCount: 80 deviceMemorySize: 15.78GiB deviceMemoryBandwidth: 836.37GiB/s
2021-07-27 09:07:46.193733: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.194748: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.195660: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1871] Adding visible gpu devices: 0
2021-07-27 09:07:46.195706: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0
2021-07-27 09:07:46.821426: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1258] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-07-27 09:07:46.821464: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1264]      0 
2021-07-27 09:07:46.821473: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1277] 0:   N 
2021-07-27 09:07:46.821754: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.822812: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.823824: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-07-27 09:07:46.824737: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1418] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 14646 MB memory) -> physical GPU (device: 0, name: Tesla V100-SXM2-16GB, pci bus id: 0000:00:05.0, compute capability: 7.0)
2021-07-27 09:07:46.854033: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
2021-07-27 09:07:46.854452: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2000185000 Hz

Ora che ExampleGen ha terminato l'ingestione dei dati, il passo successivo è l'analisi dei dati.

StatisticheGen

I StatisticsGen Calcola le componenti statistiche oltre il set di dati per l'analisi dei dati, così come per l'utilizzo in componenti a valle. Esso utilizza il tensorflow Data Validation biblioteca.

StatisticsGen prende come input il set di dati che abbiamo appena ingerito utilizzando ExampleGen .

statistics_gen = tfx.components.StatisticsGen(
    examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for StatisticsGen
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Running publisher for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized

Dopo StatisticsGen termina l'esecuzione, possiamo visualizzare le statistiche outputted. Prova a giocare con le diverse trame!

context.show(statistics_gen.outputs['statistics'])

SchemaGen

Lo SchemaGen componente genera uno schema, sulla base di dati statistici. (Uno schema definisce i limiti del previsto, i tipi e le proprietà delle funzioni di set di dati.) Si utilizza anche la tensorflow Data Validation biblioteca.

SchemaGen prenderà come input le statistiche che abbiamo generato con StatisticsGen , guardando la scissione di formazione per impostazione predefinita.

schema_gen = tfx.components.SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for SchemaGen
INFO:absl:MetadataStore with DB connection initialized
2021-07-27 09:07:50.046440: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Running executor for SchemaGen
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Running publisher for SchemaGen
INFO:absl:MetadataStore with DB connection initialized

Dopo SchemaGen termina l'esecuzione, possiamo visualizzare lo schema generato come una tabella.

context.show(schema_gen.outputs['schema'])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_data_validation/utils/display_util.py:180: FutureWarning: Passing a negative integer is deprecated in version 1.0 and will not be supported in future version. Instead, use None to not limit the column width.
  pd.set_option('max_colwidth', -1)

Ogni caratteristica nel tuo set di dati viene mostrata come una riga nella tabella dello schema, insieme alle sue proprietà. Lo schema cattura anche tutti i valori che assume una caratteristica categorica, indicata come il suo dominio.

Per ulteriori informazioni su schemi, consultare la documentazione SchemaGen .

Esempio Validator

ExampleValidator componente rileva le anomalie nei dati, sulla base delle aspettative definiti dallo schema. Esso utilizza anche la tensorflow Data Validation biblioteca.

ExampleValidator prenderà come input le statistiche da StatisticsGen , e lo schema da SchemaGen .

example_validator = tfx.components.ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for ExampleValidator
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/ExampleValidator/anomalies/4/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/ExampleValidator/anomalies/4/Split-eval.
INFO:absl:Running publisher for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized

Dopo ExampleValidator termina l'esecuzione, possiamo visualizzare le anomalie come un tavolo.

context.show(example_validator.outputs['anomalies'])
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_data_validation/utils/display_util.py:217: FutureWarning: Passing a negative integer is deprecated in version 1.0 and will not be supported in future version. Instead, use None to not limit the column width.
  pd.set_option('max_colwidth', -1)

Nella tabella delle anomalie, possiamo vedere che non ci sono anomalie. Questo è ciò che ci aspetteremmo, poiché questo è il primo set di dati che abbiamo analizzato e lo schema è adattato ad esso. Dovresti rivedere questo schema: qualsiasi cosa inaspettata significa un'anomalia nei dati. Una volta rivisto, lo schema può essere utilizzato per proteggere i dati futuri e le anomalie prodotte qui possono essere utilizzate per eseguire il debug delle prestazioni del modello, comprendere l'evoluzione dei dati nel tempo e identificare gli errori dei dati.

Trasformare

Il Transform esegue componente caratteristica di ingegneria sia per la formazione e servire. Esso utilizza la tensorflow Transform biblioteca.

Transform avrà come input i dati dal ExampleGen , lo schema da SchemaGen , così come un modulo che contiene definito dall'utente Transform codice.

Vediamo un esempio definito dall'utente Transform codice qui sotto (per un'introduzione al tensorflow Transform API, vedere l'esercitazione ). Innanzitutto, definiamo alcune costanti per l'ingegneria delle funzionalità:

_taxi_constants_module_file = 'taxi_constants.py'
%%writefile {_taxi_constants_module_file}

# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

CATEGORICAL_FEATURE_KEYS = [
    'trip_start_hour', 'trip_start_day', 'trip_start_month',
    'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
    'dropoff_community_area'
]

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = [
    'pickup_latitude', 'pickup_longitude', 'dropoff_latitude',
    'dropoff_longitude'
]

# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 1000

# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10

VOCAB_FEATURE_KEYS = [
    'payment_type',
    'company',
]

# Keys
LABEL_KEY = 'tips'
FARE_KEY = 'fare'

def transformed_name(key):
  return key + '_xf'
Writing taxi_constants.py

Successivamente, abbiamo scrivere la preprocessing_fn che prende in dati grezzi come input e restituisce funzioni trasformate che il nostro modello può allenarsi su:

_taxi_transform_module_file = 'taxi_transform.py'
%%writefile {_taxi_transform_module_file}

import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY
_LABEL_KEY = taxi_constants.LABEL_KEY
_transformed_name = taxi_constants.transformed_name


def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.
  Args:
    inputs: map from feature keys to raw not-yet-transformed features.
  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  for key in _DENSE_FLOAT_FEATURE_KEYS:
    # Preserve this feature as a dense float, setting nan's to the mean.
    outputs[_transformed_name(key)] = tft.scale_to_z_score(
        _fill_in_missing(inputs[key]))

  for key in _VOCAB_FEATURE_KEYS:
    # Build a vocabulary for this feature.
    outputs[_transformed_name(key)] = tft.compute_and_apply_vocabulary(
        _fill_in_missing(inputs[key]),
        top_k=_VOCAB_SIZE,
        num_oov_buckets=_OOV_SIZE)

  for key in _BUCKET_FEATURE_KEYS:
    outputs[_transformed_name(key)] = tft.bucketize(
        _fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)

  for key in _CATEGORICAL_FEATURE_KEYS:
    outputs[_transformed_name(key)] = _fill_in_missing(inputs[key])

  # Was this passenger a big tipper?
  taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
  tips = _fill_in_missing(inputs[_LABEL_KEY])
  outputs[_transformed_name(_LABEL_KEY)] = tf.where(
      tf.math.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

  return outputs


def _fill_in_missing(x):
  """Replace missing values in a SparseTensor.
  Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x

  default_value = '' if x.dtype == tf.string else 0
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing taxi_transform.py

Ora, passiamo in questo codice funzione di ingegneria per la Transform dei componenti ed eseguirlo per trasformare i vostri dati.

transform = tfx.components.Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath(_taxi_transform_module_file))
context.run(transform)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py' (including modules: ['taxi_constants', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpoqmg142s/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpanjcjub4', '--dist-dir', '/tmp/tmpdsj16ttp']
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl'; target user module is 'taxi_transform'.
INFO:absl:Full user module path is 'taxi_transform@/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl'
INFO:absl:Running driver for Transform
INFO:absl:MetadataStore with DB connection initialized
2021-07-27 09:07:50.744965: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Running executor for Transform
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmpanjcjub4
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmpanjcjub4
copying build/lib/taxi_transform.py -> /tmp/tmpanjcjub4
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing tfx_user_code_Transform.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmpanjcjub4/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3.7.egg-info
running install_scripts
creating /tmp/tmpanjcjub4/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.dist-info/WHEEL
creating '/tmp/tmpdsj16ttp/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl' and adding '/tmp/tmpanjcjub4' to it
adding 'taxi_constants.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.dist-info/METADATA'
adding 'tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.dist-info/WHEEL'
adding 'tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.dist-info/top_level.txt'
adding 'tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f.dist-info/RECORD'
removing /tmp/tmpanjcjub4
2021-07-27 09:07:50.749018: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpgm2vzpks', '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl']
Processing /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl
WARNING: You are using pip version 21.1.3; however, version 21.2.1 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl'.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpgvos8jkh', '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f
Processing /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl
WARNING: You are using pip version 21.1.3; however, version 21.2.1 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl'.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Installing '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpfzcjc_89', '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl']
Processing /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl
WARNING: You are using pip version 21.1.3; however, version 21.2.1 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f-py3-none-any.whl'.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+ba15fceb350294024553cb2f31d9929992f91dcaa3af4f05811c926d31c25e8f
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:tensorflow:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
2021-07-27 09:08:04.817364: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/transform_graph/5/.temp_path/tftransform_tmp/da700272a3d54e20a2b7ccdc18a4fecc/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/transform_graph/5/.temp_path/tftransform_tmp/688d8c4944014a3cb6680dd2e0499418/assets
INFO:absl:Running publisher for Transform
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di Transform . Questo componente produce due tipi di output:

  • transform_graph è il grafico che può eseguire le operazioni di pre-elaborazione (questo grafico sarà incluso nei modelli servire e valutazione).
  • transformed_examples rappresenta i dati di allenamento e di valutazione già preparati.
transform.outputs
{'transform_graph': Channel(
     type_name: TransformGraph
     artifacts: [Artifact(artifact: id: 5
 type_id: 13
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/transform_graph/5"
 custom_properties {
   key: "name"
   value {
     string_value: "transform_graph"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 13
 name: "TransformGraph"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'transformed_examples': Channel(
     type_name: Examples
     artifacts: [Artifact(artifact: id: 6
 type_id: 5
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/transformed_examples/5"
 properties {
   key: "split_names"
   value {
     string_value: "[\"train\", \"eval\"]"
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "transformed_examples"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 5
 name: "Examples"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 properties {
   key: "version"
   value: INT
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'updated_analyzer_cache': Channel(
     type_name: TransformCache
     artifacts: [Artifact(artifact: id: 7
 type_id: 14
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/updated_analyzer_cache/5"
 custom_properties {
   key: "name"
   value {
     string_value: "updated_analyzer_cache"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 14
 name: "TransformCache"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 8
 type_id: 9
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/pre_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 9
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 9
 type_id: 7
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/pre_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 7
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 10
 type_id: 9
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/post_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 9
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 11
 type_id: 7
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/post_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 7
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_anomalies': Channel(
     type_name: ExampleAnomalies
     artifacts: [Artifact(artifact: id: 12
 type_id: 11
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Transform/post_transform_anomalies/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_anomalies"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 11
 name: "ExampleAnomalies"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Dai un'occhiata al transform_graph manufatto. Punta a una directory contenente tre sottodirectory.

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

Il transformed_metadata sottodirectory contiene lo schema dei dati pre-elaborati. Il transform_fn sottodirectory contiene il grafico preelaborazione effettivo. Il metadata sottodirectory contiene lo schema dei dati originali.

Possiamo anche dare un'occhiata ai primi tre esempi trasformati:

# Get the URI of the output artifact representing the transformed examples, which is a directory
train_uri = os.path.join(transform.outputs['transformed_examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 8
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 0.061060599982738495
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: -0.15886740386486053
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: -0.7118487358093262
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 5
      }
    }
  }
}

features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 1.2521240711212158
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: 0.532160758972168
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: 0.5509493350982666
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 10
      }
    }
  }
}

features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 48
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 0.3873794376850128
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: 0.21955278515815735
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: 0.0019067146349698305
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 11
      }
    }
  }
}

Dopo il Transform componente ha trasformato i dati in caratteristiche, e il prossimo passo è quello di formare un modello.

Allenatore

Il Trainer componente formerà un modello che si definisce in tensorflow. Predefinito supporto Trainer Estimator API, per usare Keras API, è necessario specificare Trainer generico dal programma di installazione custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor) in contructor del formatore.

Trainer prende in ingresso lo schema da SchemaGen , i dati trasformati e grafico dalla Transform , formazione parametri, così come un modulo che contiene il codice modello definito dall'utente.

Vediamo un esempio di codice del modello definito dall'utente di seguito (per un'introduzione ai Keras API tensorflow, consultare il tutorial ):

_taxi_trainer_module_file = 'taxi_trainer.py'
%%writefile {_taxi_trainer_module_file}

from typing import List, Text

import os
import absl
import datetime
import tensorflow as tf
import tensorflow_transform as tft

from tfx import v1 as tfx
from tfx_bsl.public import tfxio

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = taxi_constants.LABEL_KEY
_transformed_name = taxi_constants.transformed_name


def _transformed_names(keys):
  return [_transformed_name(key) for key in keys]


def _get_serve_tf_examples_fn(model, tf_transform_output):
  """Returns a function that parses a serialized tf.Example and applies TFT."""

  model.tft_layer = tf_transform_output.transform_features_layer()

  @tf.function
  def serve_tf_examples_fn(serialized_tf_examples):
    """Returns the output to be used in the serving signature."""
    feature_spec = tf_transform_output.raw_feature_spec()
    feature_spec.pop(_LABEL_KEY)
    parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
    transformed_features = model.tft_layer(parsed_features)
    return model(transformed_features)

  return serve_tf_examples_fn


def _input_fn(file_pattern: List[Text],
              data_accessor: tfx.components.DataAccessor,
              tf_transform_output: tft.TFTransformOutput,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      tfxio.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_transformed_name(_LABEL_KEY)),
      tf_transform_output.transformed_metadata.schema)


def _build_keras_model(hidden_units: List[int] = None) -> tf.keras.Model:
  """Creates a DNN Keras model for classifying taxi data.

  Args:
    hidden_units: [int], the layer sizes of the DNN (input layer first).

  Returns:
    A keras Model.
  """
  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _transformed_names(_VOCAB_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _transformed_names(_BUCKET_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(  # pylint: disable=g-complex-comprehension
          key,
          num_buckets=num_buckets,
          default_value=0) for key, num_buckets in zip(
              _transformed_names(_CATEGORICAL_FEATURE_KEYS),
              _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  indicator_column = [
      tf.feature_column.indicator_column(categorical_column)
      for categorical_column in categorical_columns
  ]

  model = _wide_and_deep_classifier(
      # TODO(b/139668410) replace with premade wide_and_deep keras model
      wide_columns=indicator_column,
      deep_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25])
  return model


def _wide_and_deep_classifier(wide_columns, deep_columns, dnn_hidden_units):
  """Build a simple keras wide and deep model.

  Args:
    wide_columns: Feature columns wrapped in indicator_column for wide (linear)
      part of the model.
    deep_columns: Feature columns for deep part of the model.
    dnn_hidden_units: [int], the layer sizes of the hidden DNN.

  Returns:
    A Wide and Deep Keras model
  """
  # Following values are hard coded for simplicity in this example,
  # However prefarably they should be passsed in as hparams.

  # Keras needs the feature definitions at compile time.
  # TODO(b/139081439): Automate generation of input layers from FeatureColumn.
  input_layers = {
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype=tf.float32)
      for colname in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
  }
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_VOCAB_FEATURE_KEYS)
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_BUCKET_FEATURE_KEYS)
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_CATEGORICAL_FEATURE_KEYS)
  })

  # TODO(b/161952382): Replace with Keras preprocessing layers.
  deep = tf.keras.layers.DenseFeatures(deep_columns)(input_layers)
  for numnodes in dnn_hidden_units:
    deep = tf.keras.layers.Dense(numnodes)(deep)
  wide = tf.keras.layers.DenseFeatures(wide_columns)(input_layers)

  output = tf.keras.layers.Dense(1)(
          tf.keras.layers.concatenate([deep, wide]))

  model = tf.keras.Model(input_layers, output)
  model.compile(
      loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
      optimizer=tf.keras.optimizers.Adam(lr=0.001),
      metrics=[tf.keras.metrics.BinaryAccuracy()])
  model.summary(print_fn=absl.logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """
  # Number of nodes in the first layer of the DNN
  first_dnn_layer_size = 100
  num_dnn_layers = 4
  dnn_decay_factor = 0.7

  tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)

  train_dataset = _input_fn(fn_args.train_files, fn_args.data_accessor, 
                            tf_transform_output, 40)
  eval_dataset = _input_fn(fn_args.eval_files, fn_args.data_accessor, 
                           tf_transform_output, 40)

  model = _build_keras_model(
      # Construct layers sizes with exponetial decay
      hidden_units=[
          max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
          for i in range(num_dnn_layers)
      ])

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
      log_dir=fn_args.model_run_dir, update_freq='batch')
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps,
      callbacks=[tensorboard_callback])

  signatures = {
      'serving_default':
          _get_serve_tf_examples_fn(model,
                                    tf_transform_output).get_concrete_function(
                                        tf.TensorSpec(
                                            shape=[None],
                                            dtype=tf.string,
                                            name='examples')),
  }
  model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing taxi_trainer.py

Ora, passiamo in questo codice modello per il Trainer componenti ed eseguirlo per il training del modello.

trainer = tfx.components.Trainer(
    module_file=os.path.abspath(_taxi_trainer_module_file),
    examples=transform.outputs['transformed_examples'],
    transform_graph=transform.outputs['transform_graph'],
    schema=schema_gen.outputs['schema'],
    train_args=tfx.proto.TrainArgs(num_steps=10000),
    eval_args=tfx.proto.EvalArgs(num_steps=5000))
context.run(trainer)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_trainer.py' (including modules: ['taxi_constants', 'taxi_trainer', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version 3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp_lnvffb5/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpc26kvw4n', '--dist-dir', '/tmp/tmpjsv1y_4u']
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl'; target user module is 'taxi_trainer'.
INFO:absl:Full user module path is 'taxi_trainer@/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl'
INFO:absl:Running driver for Trainer
INFO:absl:MetadataStore with DB connection initialized
2021-07-27 09:08:19.212010: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Running executor for Trainer
2021-07-27 09:08:19.215726: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 10000\n}', 'eval_args': '{\n  "num_steps": 5000\n}', 'module_file': None, 'run_fn': None, 'trainer_fn': None, 'custom_config': 'null', 'module_path': 'taxi_trainer@/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl'} 'run_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp7xh_pre7', '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_trainer.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmpc26kvw4n
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmpc26kvw4n
copying build/lib/taxi_transform.py -> /tmp/tmpc26kvw4n
copying build/lib/taxi_trainer.py -> /tmp/tmpc26kvw4n
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpc26kvw4n/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3.7.egg-info
running install_scripts
creating /tmp/tmpc26kvw4n/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.dist-info/WHEEL
creating '/tmp/tmpjsv1y_4u/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl' and adding '/tmp/tmpc26kvw4n' to it
adding 'taxi_constants.py'
adding 'taxi_trainer.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7.dist-info/RECORD'
removing /tmp/tmpc26kvw4n
Processing /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl
WARNING: You are using pip version 21.1.3; however, version 21.2.1 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/_wheels/tfx_user_code_Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7-py3-none-any.whl'.
INFO:absl:Training model.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+3acd02058a78fc9e40d70144d392b74161d6b10802fdd25a94793cf0145193b7
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:375: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.
  "The `lr` argument is deprecated, use `learning_rate` instead.")
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:company_xf (InputLayer)         [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_census_tract_xf (InputL [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_community_area_xf (Inpu [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_latitude_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_longitude_xf (InputLaye [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:fare_xf (InputLayer)            [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:payment_type_xf (InputLayer)    [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_census_tract_xf (InputLa [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_community_area_xf (Input [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_latitude_xf (InputLayer) [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_longitude_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_miles_xf (InputLayer)      [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_seconds_xf (InputLayer)    [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_day_xf (InputLayer)  [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_hour_xf (InputLayer) [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_month_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_features (DenseFeatures)  (None, 3)            0           company_xf[0][0]                 
INFO:absl:                                                                 dropoff_census_tract_xf[0][0]    
INFO:absl:                                                                 dropoff_community_area_xf[0][0]  
INFO:absl:                                                                 dropoff_latitude_xf[0][0]        
INFO:absl:                                                                 dropoff_longitude_xf[0][0]       
INFO:absl:                                                                 fare_xf[0][0]                    
INFO:absl:                                                                 payment_type_xf[0][0]            
INFO:absl:                                                                 pickup_census_tract_xf[0][0]     
INFO:absl:                                                                 pickup_community_area_xf[0][0]   
INFO:absl:                                                                 pickup_latitude_xf[0][0]         
INFO:absl:                                                                 pickup_longitude_xf[0][0]        
INFO:absl:                                                                 trip_miles_xf[0][0]              
INFO:absl:                                                                 trip_seconds_xf[0][0]            
INFO:absl:                                                                 trip_start_day_xf[0][0]          
INFO:absl:                                                                 trip_start_hour_xf[0][0]         
INFO:absl:                                                                 trip_start_month_xf[0][0]        
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 100)          400         dense_features[0][0]             
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 70)           7070        dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 48)           3408        dense_1[0][0]                    
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_3 (Dense)                 (None, 34)           1666        dense_2[0][0]                    
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_features_1 (DenseFeatures (None, 2127)         0           company_xf[0][0]                 
INFO:absl:                                                                 dropoff_census_tract_xf[0][0]    
INFO:absl:                                                                 dropoff_community_area_xf[0][0]  
INFO:absl:                                                                 dropoff_latitude_xf[0][0]        
INFO:absl:                                                                 dropoff_longitude_xf[0][0]       
INFO:absl:                                                                 fare_xf[0][0]                    
INFO:absl:                                                                 payment_type_xf[0][0]            
INFO:absl:                                                                 pickup_census_tract_xf[0][0]     
INFO:absl:                                                                 pickup_community_area_xf[0][0]   
INFO:absl:                                                                 pickup_latitude_xf[0][0]         
INFO:absl:                                                                 pickup_longitude_xf[0][0]        
INFO:absl:                                                                 trip_miles_xf[0][0]              
INFO:absl:                                                                 trip_seconds_xf[0][0]            
INFO:absl:                                                                 trip_start_day_xf[0][0]          
INFO:absl:                                                                 trip_start_hour_xf[0][0]         
INFO:absl:                                                                 trip_start_month_xf[0][0]        
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 2161)         0           dense_3[0][0]                    
INFO:absl:                                                                 dense_features_1[0][0]           
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_4 (Dense)                 (None, 1)            2162        concatenate[0][0]                
INFO:absl:==================================================================================================
INFO:absl:Total params: 14,706
INFO:absl:Trainable params: 14,706
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
2021-07-27 09:08:21.580710: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
2021-07-27 09:08:21.580762: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
2021-07-27 09:08:21.580858: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1611] Profiler found 1 GPUs
2021-07-27 09:08:21.643763: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcupti.so.11.2
2021-07-27 09:08:21.847952: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session tear down.
2021-07-27 09:08:21.853003: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1743] CUPTI activity buffer flushed
2021-07-27 09:08:23.104739: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublas.so.11
1/10000 [..............................] - ETA: 4:30:47 - loss: 0.6922 - binary_accuracy: 0.7750
2021-07-27 09:08:23.544669: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcublasLt.so.11
2021-07-27 09:08:23.585375: I tensorflow/core/profiler/lib/profiler_session.cc:126] Profiler session initializing.
2021-07-27 09:08:23.585425: I tensorflow/core/profiler/lib/profiler_session.cc:141] Profiler session started.
21/10000 [..............................] - ETA: 3:42 - loss: 0.6493 - binary_accuracy: 0.7821
2021-07-27 09:08:23.797730: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
2021-07-27 09:08:23.800405: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1743] CUPTI activity buffer flushed
2021-07-27 09:08:23.833723: I tensorflow/core/profiler/internal/gpu/cupti_collector.cc:673]  GpuTracer has collected 301 callback api events and 298 activity events. 
2021-07-27 09:08:23.841253: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session tear down.
2021-07-27 09:08:23.850367: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23
2021-07-27 09:08:23.857266: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for trace.json.gz to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.trace.json.gz
2021-07-27 09:08:23.876579: I tensorflow/core/profiler/rpc/client/save_profile.cc:137] Creating directory: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23
2021-07-27 09:08:23.879755: I tensorflow/core/profiler/rpc/client/save_profile.cc:143] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.memory_profile.json.gz
2021-07-27 09:08:23.880489: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23Dumped tool data for xplane.pb to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6/train/plugins/profile/2021_07_27_09_08_23/kokoro-gcp-ubuntu-prod-762616165.kernel_stats.pb
10000/10000 [==============================] - 83s 8ms/step - loss: 0.2376 - binary_accuracy: 0.8600 - val_loss: 0.2218 - val_binary_accuracy: 0.8729
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model/6/Format-Serving/assets
INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model/6/Format-Serving. ModelRun written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model_run/6
INFO:absl:Running publisher for Trainer
INFO:absl:MetadataStore with DB connection initialized

Analizza l'allenamento con TensorBoard

Dai un'occhiata al manufatto dell'allenatore. Punta a una directory contenente le sottodirectory del modello.

model_artifact_dir = trainer.outputs['model'].get()[0].uri
pp.pprint(os.listdir(model_artifact_dir))
model_dir = os.path.join(model_artifact_dir, 'Format-Serving')
pp.pprint(os.listdir(model_dir))
['Format-Serving']
['variables', 'assets', 'keras_metadata.pb', 'saved_model.pb']

Facoltativamente, possiamo collegare TensorBoard al Trainer per analizzare le curve di allenamento del nostro modello.

model_run_artifact_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_artifact_dir}

valutatore

Il Evaluator componente calcola metriche modello prestazioni rispetto il set di valutazione. Esso utilizza il tensorflow modello di analisi biblioteca. Il Evaluator può anche opzionalmente convalidare che un modello di nuova formazione è migliore rispetto al modello precedente. Ciò è utile in un'impostazione di pipeline di produzione in cui è possibile addestrare e convalidare automaticamente un modello ogni giorno. In questo notebook, abbiamo solo alleniamo un modello, in modo che il Evaluator automaticamente verrà etichettare il modello come "buono".

Evaluator prenderà come input i dati dal ExampleGen , il modello addestrato da Trainer , e la configurazione di taglio. La configurazione delle sezioni ti consente di suddividere le tue metriche in base ai valori delle caratteristiche (ad esempio, come si comporta il tuo modello sui viaggi in taxi che iniziano alle 8:00 rispetto alle 20:00?). Vedere un esempio di questa configurazione di seguito:

eval_config = tfma.EvalConfig(
    model_specs=[
        # This assumes a serving model with signature 'serving_default'. If
        # using estimator based EvalSavedModel, add signature_name: 'eval' and 
        # remove the label_key.
        tfma.ModelSpec(label_key='tips')
    ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            # To add validation thresholds for metrics saved with the model,
            # add them keyed by metric name to the thresholds map.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount'),
                tfma.MetricConfig(class_name='BinaryAccuracy',
                  threshold=tfma.MetricThreshold(
                      value_threshold=tfma.GenericValueThreshold(
                          lower_bound={'value': 0.5}),
                      # Change threshold will be ignored if there is no
                      # baseline model resolved from MLMD (first run).
                      change_threshold=tfma.GenericChangeThreshold(
                          direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                          absolute={'value': -1e-10})))
            ]
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

Avanti, diamo questa configurazione al Evaluator ed eseguirlo.

# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.

# The model resolver is only required if performing model validation in addition
# to evaluation. In this case we validate against the latest blessed model. If
# no model has been blessed before (as in this case) the evaluator will make our
# candidate the first blessed model.
model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')
context.run(model_resolver)

evaluator = tfx.components.Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    baseline_model=model_resolver.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
INFO:absl:Running driver for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running publisher for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running driver for Evaluator
INFO:absl:MetadataStore with DB connection initialized
2021-07-27 09:09:55.670102: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Running executor for Evaluator
2021-07-27 09:09:55.673778: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Nonempty beam arg extra_packages already includes dependency
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        },\n        {\n          "class_name": "BinaryAccuracy",\n          "threshold": {\n            "change_threshold": {\n              "absolute": -1e-10,\n              "direction": "HIGHER_IS_BETTER"\n            },\n            "value_threshold": {\n              "lower_bound": 0.5\n            }\n          }\n        }\n      ]\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "tips"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': None, 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_eval_shared_model'
ERROR:absl:There are change thresholds, but the baseline is missing. This is allowed only when rubber stamping (first run).
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Using /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model/6/Format-Serving as  model.
Exception ignored in: <function CapturableResource.__del__ at 0x7f2a1f16d9e0>
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py", line 277, in __del__
    self._destroy_resource()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
    result = self._call(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 924, in _call
    results = self._stateful_fn(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3022, in __call__
    filtered_flat_args) = self._maybe_define_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3444, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3289, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 999, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 672, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
AttributeError: 'NoneType' object has no attribute '__wrapped__'
Exception ignored in: <function CapturableResource.__del__ at 0x7f2a1f16d9e0>
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py", line 277, in __del__
    self._destroy_resource()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
    result = self._call(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 924, in _call
    results = self._stateful_fn(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3022, in __call__
    filtered_flat_args) = self._maybe_define_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3444, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3289, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 999, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 672, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
AttributeError: 'NoneType' object has no attribute '__wrapped__'
Exception ignored in: <function CapturableResource.__del__ at 0x7f2a1f16d9e0>
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py", line 277, in __del__
    self._destroy_resource()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
    result = self._call(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 924, in _call
    results = self._stateful_fn(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3022, in __call__
    filtered_flat_args) = self._maybe_define_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3444, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3289, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 999, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 672, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
AttributeError: 'NoneType' object has no attribute '__wrapped__'
Exception ignored in: <function CapturableResource.__del__ at 0x7f2a1f16d9e0>
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/tracking/tracking.py", line 277, in __del__
    self._destroy_resource()
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 889, in __call__
    result = self._call(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 924, in _call
    results = self._stateful_fn(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3022, in __call__
    filtered_flat_args) = self._maybe_define_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3444, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3289, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 999, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 672, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
AttributeError: 'NoneType' object has no attribute '__wrapped__'
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f2a90368b90> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f29e04590d0>).
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        },\n        {\n          "class_name": "BinaryAccuracy",\n          "threshold": {\n            "change_threshold": {\n              "absolute": -1e-10,\n              "direction": "HIGHER_IS_BETTER"\n            },\n            "value_threshold": {\n              "lower_bound": 0.5\n            }\n          }\n        }\n      ]\n    }\n  ],\n  "model_specs": [\n    {\n      "label_key": "tips"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': None, 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f29e3987050> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f29e011d590>).
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f29c83c43d0> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f29c8161ed0>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f295867efd0> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f295868bd10>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f2526140410> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f2526309cd0>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f29587df150> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f2a902f1490>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f2960342a10> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f2a63a7af10>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f250d20c090> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f250d230fd0>).
INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Evaluator/evaluation/8.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:113: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Evaluator/blessing/8.
INFO:absl:Running publisher for Evaluator
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo ora i manufatti di uscita del Evaluator .

evaluator.outputs
{'evaluation': Channel(
     type_name: ModelEvaluation
     artifacts: [Artifact(artifact: id: 15
 type_id: 20
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Evaluator/evaluation/8"
 custom_properties {
   key: "name"
   value {
     string_value: "evaluation"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 20
 name: "ModelEvaluation"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'blessing': Channel(
     type_name: ModelBlessing
     artifacts: [Artifact(artifact: id: 16
 type_id: 21
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Evaluator/blessing/8"
 custom_properties {
   key: "blessed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "current_model"
   value {
     string_value: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Trainer/model/6"
   }
 }
 custom_properties {
   key: "current_model_id"
   value {
     int_value: 13
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "blessing"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 21
 name: "ModelBlessing"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Utilizzando la evaluation dell'uscita si può mostrare la visualizzazione predefinita di metriche globali sull'intero set di valutazione.

context.show(evaluator.outputs['evaluation'])

Per vedere la visualizzazione per le metriche di valutazione suddivise, possiamo chiamare direttamente la libreria TensorFlow Model Analysis.

import tensorflow_model_analysis as tfma

# Get the TFMA output result path and load the result.
PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(PATH_TO_RESULT)

# Show data sliced along feature column trip_start_hour.
tfma.view.render_slicing_metrics(
    tfma_result, slicing_column='trip_start_hour')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'trip_start_hour:19',…

Questa visualizzazione mostra gli stessi parametri, ma calcolato ad ogni valore di caratteristica trip_start_hour trascurando l'intero set di valutazione.

TensorFlow Model Analysis supporta molte altre visualizzazioni, come gli indicatori di correttezza e il tracciamento di una serie temporale delle prestazioni del modello. Per ulteriori informazioni, consultare il tutorial .

Poiché abbiamo aggiunto le soglie alla nostra configurazione, è disponibile anche l'output di convalida. Il precence di una blessing manufatto indica che il nostro modello superato la convalida. Poiché questa è la prima convalida che viene eseguita, il candidato viene automaticamente benedetto.

blessing_uri = evaluator.outputs['blessing'].get()[0].uri
!ls -l {blessing_uri}
total 0
-rw-rw-r-- 1 kbuilder kbuilder 0 Jul 27 09:10 BLESSED

Ora puoi anche verificare il successo caricando il record del risultato della convalida:

PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(PATH_TO_RESULT))
validation_ok: true
validation_details {
  slicing_details {
    slicing_spec {
    }
    num_matching_slices: 25
  }
}

spintore

Il Pusher componente è di solito alla fine di una condotta TFX. Si controlla se un modello è superato la convalida, e in caso affermativo, le esportazioni il modello da _serving_model_dir .

pusher = tfx.components.Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=tfx.proto.PushDestination(
        filesystem=tfx.proto.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)
INFO:absl:Running driver for Pusher
INFO:absl:MetadataStore with DB connection initialized
2021-07-27 09:10:20.780757: W ml_metadata/metadata_store/rdbms_metadata_access_object.cc:623] No property is defined for the Type
INFO:absl:Running executor for Pusher
INFO:absl:Model version: 1627377020
INFO:absl:Model written to serving path /tmp/tmpf2y8jc9r/serving_model/taxi_simple/1627377020.
INFO:absl:Model pushed to /tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Pusher/pushed_model/9.
INFO:absl:Running publisher for Pusher
INFO:absl:MetadataStore with DB connection initialized

Esaminiamo i manufatti di uscita di Pusher .

pusher.outputs
{'pushed_model': Channel(
     type_name: PushedModel
     artifacts: [Artifact(artifact: id: 17
 type_id: 23
 uri: "/tmp/tfx-interactive-2021-07-27T09_07_38.527065-m86gazca/Pusher/pushed_model/9"
 custom_properties {
   key: "name"
   value {
     string_value: "pushed_model"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Pusher"
   }
 }
 custom_properties {
   key: "pushed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "pushed_destination"
   value {
     string_value: "/tmp/tmpf2y8jc9r/serving_model/taxi_simple/1627377020"
   }
 }
 custom_properties {
   key: "pushed_version"
   value {
     string_value: "1627377020"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.0.0"
   }
 }
 state: LIVE
 , artifact_type: id: 23
 name: "PushedModel"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

In particolare, il Pusher esporterà il tuo modello nel formato SavedModel, che assomiglia a questo:

push_uri = pusher.outputs['pushed_model'].get()[0].uri
model = tf.saved_model.load(push_uri)

for item in model.signatures.items():
  pp.pprint(item)
('serving_default',
 <ConcreteFunction signature_wrapper(*, examples) at 0x7F250C448490>)

Abbiamo terminato il nostro tour dei componenti TFX integrati!