Dołącz do społeczności SIG TFX-Addons i pomóż ulepszyć TFX!
Ta strona została przetłumaczona przez Cloud Translation API.
Switch to English

Samouczek dotyczący komponentów TFX Keras

Komponent po komponencie Wprowadzenie do TensorFlow Extended (TFX)

Ten oparty na Colab samouczek interaktywnie przeprowadzi przez każdy wbudowany składnik TensorFlow Extended (TFX).

Obejmuje każdy krok w kompleksowym potoku uczenia maszynowego, od pozyskiwania danych do wypychania modelu do udostępniania.

Kiedy skończysz, zawartość tego notebooka może zostać automatycznie wyeksportowana jako kod źródłowy potoku TFX, który można aranżować za pomocą Apache Airflow i Apache Beam.

tło

Ten notatnik pokazuje, jak używać TFX w środowisku Jupyter / Colab. Tutaj przechodzimy przez przykład Chicago Taxi w interaktywnym notatniku.

Praca w interaktywnym notatniku to przydatny sposób na zapoznanie się ze strukturą potoku TFX. Jest to również przydatne podczas tworzenia własnych potoków jako lekkiego środowiska programistycznego, ale należy mieć świadomość, że istnieją różnice w sposobie aranżacji interaktywnych notatników i dostępie do artefaktów metadanych.

Orkiestracja

We wdrożeniu produkcyjnym TFX będziesz używać koordynatora, takiego jak Apache Airflow, Kubeflow Pipelines lub Apache Beam, aby zaaranżować wstępnie zdefiniowany wykres potoku komponentów TFX. W interaktywnym notebooku sam notebook pełni rolę koordynatora, który uruchamia każdy składnik TFX podczas wykonywania komórek notebooka.

Metadane

We wdrożeniu produkcyjnym TFX uzyskasz dostęp do metadanych za pośrednictwem interfejsu API ML Metadata (MLMD). MLMD przechowuje właściwości metadanych w bazie danych, takiej jak MySQL lub SQLite, i przechowuje ładunki metadanych w trwałym magazynie, takim jak system plików. W notatniku interaktywnym zarówno właściwości, jak i ładunki są przechowywane w efemerycznej bazie danych SQLite w katalogu /tmp na notebooku Jupyter lub serwerze Colab.

Ustawiać

Najpierw instalujemy i importujemy niezbędne pakiety, konfigurujemy ścieżki i pobieramy dane.

Upgrade Pip

Aby uniknąć aktualizacji Pipa w systemie podczas pracy lokalnie, upewnij się, że działamy w Colab. Systemy lokalne można oczywiście aktualizować oddzielnie.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Zainstaluj TFX

pip install -q -U --use-deprecated=legacy-resolver tfx

Czy uruchomiłeś ponownie środowisko wykonawcze?

Jeśli korzystasz z Google Colab, przy pierwszym uruchomieniu powyższej komórki musisz ponownie uruchomić środowisko wykonawcze (Środowisko wykonawcze> Uruchom ponownie środowisko wykonawcze ...). Wynika to ze sposobu, w jaki Colab ładuje paczki.

Importuj pakiety

Importujemy niezbędne pakiety, w tym standardowe klasy komponentów TFX.

import os
import pprint
import tempfile
import urllib

import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()

import tfx
from tfx.components import CsvExampleGen
from tfx.components import Evaluator
from tfx.components import ExampleValidator
from tfx.components import Pusher
from tfx.components import ResolverNode
from tfx.components import SchemaGen
from tfx.components import StatisticsGen
from tfx.components import Trainer
from tfx.components import Transform
from tfx.components.base import executor_spec
from tfx.components.trainer.executor import GenericExecutor
from tfx.dsl.experimental import latest_blessed_model_resolver
from tfx.orchestration import metadata
from tfx.orchestration import pipeline
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext
from tfx.proto import pusher_pb2
from tfx.proto import trainer_pb2
from tfx.types import Channel
from tfx.types.standard_artifacts import Model
from tfx.types.standard_artifacts import ModelBlessing
from tfx.utils.dsl_utils import external_input


%load_ext tfx.orchestration.experimental.interactive.notebook_extensions.skip
WARNING:absl:RuntimeParameter is only supported on Cloud-based DAG runner currently.

Sprawdźmy wersje bibliotek.

print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.4.1
TFX version: 0.29.0

Skonfiguruj ścieżki potoku

# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__[0]

# This is the directory containing the TFX Chicago Taxi Pipeline example.
_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_pipeline')

# This is the path where your model will be pushed for serving.
_serving_model_dir = os.path.join(
    tempfile.mkdtemp(), 'serving_model/taxi_simple')

# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)

Pobierz przykładowe dane

Pobieramy przykładowy zestaw danych do wykorzystania w naszym potoku TFX.

Zbiór danych, którego używamy, to zbiór danych Taxi Trips opublikowany przez miasto Chicago. Kolumny w tym zbiorze danych to:

pickup_community_area opłata trip_start_month
trip_start_hour trip_start_day trip_start_timestamp
pickup_latitude pickup_longitude dropoff_latitude
dropoff_longitude trip_miles pickup_census_tract
dropoff_census_tract typ płatności firma
trip_seconds dropoff_community_area wskazówki

Na podstawie tego zbioru danych zbudujemy model, który przewiduje tips dotyczące podróży.

_data_root = tempfile.mkdtemp(prefix='tfx-data')
DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
('/tmp/tfx-data58r_oz_6/data.csv', <http.client.HTTPMessage at 0x7f691faad320>)

Rzuć okiem na plik CSV.

head {_data_filepath}
pickup_community_area,fare,trip_start_month,trip_start_hour,trip_start_day,trip_start_timestamp,pickup_latitude,pickup_longitude,dropoff_latitude,dropoff_longitude,trip_miles,pickup_census_tract,dropoff_census_tract,payment_type,company,trip_seconds,dropoff_community_area,tips
,12.45,5,19,6,1400269500,,,,,0.0,,,Credit Card,Chicago Elite Cab Corp. (Chicago Carriag,0,,0.0
,0,3,19,5,1362683700,,,,,0,,,Unknown,Chicago Elite Cab Corp.,300,,0
60,27.05,10,2,3,1380593700,41.836150155,-87.648787952,,,12.6,,,Cash,Taxi Affiliation Services,1380,,0.0
10,5.85,10,1,2,1382319000,41.985015101,-87.804532006,,,0.0,,,Cash,Taxi Affiliation Services,180,,0.0
14,16.65,5,7,5,1369897200,41.968069,-87.721559063,,,0.0,,,Cash,Dispatch Taxi Affiliation,1080,,0.0
13,16.45,11,12,3,1446554700,41.983636307,-87.723583185,,,6.9,,,Cash,,780,,0.0
16,32.05,12,1,1,1417916700,41.953582125,-87.72345239,,,15.4,,,Cash,,1200,,0.0
30,38.45,10,10,5,1444301100,41.839086906,-87.714003807,,,14.6,,,Cash,,2580,,0.0
11,14.65,1,1,3,1358213400,41.978829526,-87.771166703,,,5.81,,,Cash,,1080,,0.0

Zastrzeżenie: Ta witryna udostępnia aplikacje korzystające z danych, które zostały zmodyfikowane do użytku z oryginalnego źródła, www.cityofchicago.org, oficjalnej witryny internetowej miasta Chicago. Miasto Chicago nie rości sobie żadnych roszczeń co do treści, dokładności, aktualności ani kompletności jakichkolwiek danych udostępnionych na tej stronie. Dane podane na tej stronie mogą ulec zmianie w dowolnym momencie. Rozumie się, że dane podane na tej stronie są wykorzystywane na własne ryzyko.

Utwórz InteractiveContext

Na koniec tworzymy InteractiveContext, który pozwoli nam interaktywnie uruchamiać komponenty TFX w tym notebooku.

# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/metadata.sqlite.

Uruchamiaj komponenty TFX interaktywnie

W kolejnych komórkach tworzymy pojedynczo komponenty TFX, uruchamiamy każdy z nich i wizualizujemy ich artefakty wyjściowe.

ExampleGen

Składnik ExampleGen zwykle znajduje się na początku potoku TFX. To będzie:

  1. Podziel dane na zbiory uczące i oceniające (domyślnie 2/3 szkolenie + 1/3 ocena)
  2. Konwertuj dane do formatu tf.Example
  3. Skopiuj dane do katalogu _tfx_root aby inne komponenty miały do ​​nich dostęp

ExampleGen przyjmuje jako dane wejściowe ścieżkę do źródła danych. W naszym przypadku jest to ścieżka _data_root która zawiera pobrany plik CSV.

example_gen = CsvExampleGen(input=external_input(_data_root))
context.run(example_gen)
WARNING:absl:From <ipython-input-1-2e0190c2dd16>:1: external_input (from tfx.utils.dsl_utils) is deprecated and will be removed in a future version.
Instructions for updating:
external_input is deprecated, directly pass the uri to ExampleGen.
WARNING:absl:The "input" argument to the CsvExampleGen component has been deprecated by "input_base". Please update your usage as support for this argument will be removed soon.
INFO:absl:Running driver for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:Running executor for CsvExampleGen
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-data58r_oz_6/* to TFExample.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Running publisher for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized

Przyjrzyjmy się artefaktom wyjściowym ExampleGen . Ten komponent tworzy dwa artefakty, przykłady szkoleniowe i przykłady oceny:

artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/CsvExampleGen/examples/1

Możemy również przyjrzeć się trzem pierwszym przykładom szkoleń:

# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Chicago Elite Cab Corp. (Chicago Carriag"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 12.449999809265137
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Credit Card"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1400269500
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Taxi Affiliation Services"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 27.049999237060547
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.836151123046875
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.64878845214844
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 12.600000381469727
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 1380
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1380593700
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 16.450000762939453
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.98363494873047
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.72357940673828
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 6.900000095367432
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 780
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1446554700
      }
    }
  }
}

Teraz, gdy ExampleGen kończy ExampleGen danych, następnym krokiem jest analiza danych.

StatisticsGen

Składnik StatisticsGen oblicza statystyki dotyczące zestawu danych w celu analizy danych, a także do wykorzystania w dalszych składnikach. Wykorzystuje bibliotekę TensorFlow Data Validation .

StatisticsGen przyjmuje jako dane wejściowe zbiór danych, który właśnie ExampleGen przy użyciu ExampleGen .

statistics_gen = StatisticsGen(
    examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for StatisticsGen
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/StatisticsGen/statistics/2/Split-eval.
INFO:absl:Running publisher for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized

Po zakończeniu działania programu StatisticsGen możemy wizualizować wygenerowane statystyki. Spróbuj zagrać z różnymi fabułami!

context.show(statistics_gen.outputs['statistics'])

SchemaGen

Składnik SchemaGen generuje schemat na podstawie statystyk danych. (Schemat definiuje oczekiwane granice, typy i właściwości funkcji w zestawie danych). Wykorzystuje również bibliotekę TensorFlow Data Validation .

SchemaGen weźmie jako dane wejściowe statystyki, które wygenerowaliśmy za pomocą StatisticsGen , patrząc domyślnie na podział treningu.

schema_gen = SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for SchemaGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for SchemaGen
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Running publisher for SchemaGen
INFO:absl:MetadataStore with DB connection initialized

Po zakończeniu działania SchemaGen możemy wizualizować wygenerowany schemat jako tabelę.

context.show(schema_gen.outputs['schema'])

Każda funkcja w zestawie danych jest wyświetlana jako wiersz w tabeli schematu, wraz z jej właściwościami. Schemat obejmuje również wszystkie wartości, które przyjmuje cecha kategorialna, oznaczane jako jej dziedzina.

Aby dowiedzieć się więcej o schematach, zobacz dokumentację SchemaGen .

ExampleValidator

Składnik ExampleValidator wykrywa anomalie w danych na podstawie oczekiwań zdefiniowanych przez schemat. Korzysta również z biblioteki TensorFlow Data Validation .

ExampleValidator weźmie jako dane wejściowe statystyki z StatisticsGen i schemat z SchemaGen .

example_validator = ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for ExampleValidator
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/ExampleValidator/anomalies/4/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/ExampleValidator/anomalies/4/Split-eval.
INFO:absl:Running publisher for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized

Po zakończeniu działania ExampleValidator możemy wizualizować anomalie w postaci tabeli.

context.show(example_validator.outputs['anomalies'])
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_data_validation/utils/display_util.py:188: FutureWarning: Passing a negative integer is deprecated in version 1.0 and will not be supported in future version. Instead, use None to not limit the column width.
  pd.set_option('max_colwidth', -1)

W tabeli anomalii widzimy, że nie ma żadnych anomalii. Tego właśnie oczekiwalibyśmy, ponieważ jest to pierwszy zestaw danych, który przeanalizowaliśmy, a schemat jest do niego dostosowany. Powinieneś przejrzeć ten schemat - wszystko nieoczekiwane oznacza anomalię w danych. Po przejrzeniu schematu można użyć do ochrony przyszłych danych, a wygenerowane tutaj anomalie można wykorzystać do debugowania wydajności modelu, zrozumienia ewolucji danych w czasie i identyfikowania błędów danych.

Przekształcać

Komponent Transform wykonuje inżynierię funkcji zarówno na potrzeby szkolenia, jak i udostępniania. Używa biblioteki TensorFlow Transform .

Transform przyjmie jako dane wejściowe dane z ExampleGen , schemat z SchemaGen , a także moduł zawierający kod transformacji zdefiniowany przez użytkownika.

Zobaczmy poniżej przykład kodu transformacji zdefiniowanego przez użytkownika (wprowadzenie do interfejsów API transformacji TensorFlow znajduje się w samouczku ). Najpierw definiujemy kilka stałych do inżynierii cech:

_taxi_constants_module_file = 'taxi_constants.py'
%%writefile {_taxi_constants_module_file}

# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

CATEGORICAL_FEATURE_KEYS = [
    'trip_start_hour', 'trip_start_day', 'trip_start_month',
    'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
    'dropoff_community_area'
]

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = [
    'pickup_latitude', 'pickup_longitude', 'dropoff_latitude',
    'dropoff_longitude'
]

# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 1000

# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10

VOCAB_FEATURE_KEYS = [
    'payment_type',
    'company',
]

# Keys
LABEL_KEY = 'tips'
FARE_KEY = 'fare'

def transformed_name(key):
  return key + '_xf'
Writing taxi_constants.py

Następnie piszemy preprocessing_fn który pobiera surowe dane jako dane wejściowe i zwraca przekształcone funkcje, na których nasz model może trenować:

_taxi_transform_module_file = 'taxi_transform.py'
%%writefile {_taxi_transform_module_file}

import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY
_LABEL_KEY = taxi_constants.LABEL_KEY
_transformed_name = taxi_constants.transformed_name


def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.
  Args:
    inputs: map from feature keys to raw not-yet-transformed features.
  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  for key in _DENSE_FLOAT_FEATURE_KEYS:
    # Preserve this feature as a dense float, setting nan's to the mean.
    outputs[_transformed_name(key)] = tft.scale_to_z_score(
        _fill_in_missing(inputs[key]))

  for key in _VOCAB_FEATURE_KEYS:
    # Build a vocabulary for this feature.
    outputs[_transformed_name(key)] = tft.compute_and_apply_vocabulary(
        _fill_in_missing(inputs[key]),
        top_k=_VOCAB_SIZE,
        num_oov_buckets=_OOV_SIZE)

  for key in _BUCKET_FEATURE_KEYS:
    outputs[_transformed_name(key)] = tft.bucketize(
        _fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)

  for key in _CATEGORICAL_FEATURE_KEYS:
    outputs[_transformed_name(key)] = _fill_in_missing(inputs[key])

  # Was this passenger a big tipper?
  taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
  tips = _fill_in_missing(inputs[_LABEL_KEY])
  outputs[_transformed_name(_LABEL_KEY)] = tf.where(
      tf.math.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

  return outputs


def _fill_in_missing(x):
  """Replace missing values in a SparseTensor.
  Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x

  default_value = '' if x.dtype == tf.string else 0
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing taxi_transform.py

Teraz przekazujemy ten kod inżynieryjny funkcji do komponentu Transform i uruchamiamy go, aby przekształcić dane.

transform = Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath(_taxi_transform_module_file))
context.run(transform)
INFO:absl:Running driver for Transform
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Transform
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
WARNING:absl:The default value of `force_tf_compat_v1` will change in a future release from `True` to `False`. Since this pipeline has TF 2 behaviors enabled, Transform will use native TF 2 at that point. You can test this behavior now by passing `force_tf_compat_v1=False` or disable it by explicitly setting `force_tf_compat_v1=True` in the Transform component.
INFO:absl:Loading source_path /tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py as name user_module_0 because it has not been loaded before.
INFO:absl:/tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py is already loaded, reloading
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
WARNING:tensorflow:Tensorflow version (2.4.1) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. 
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:No assets to write.
WARNING:tensorflow:Issue encountered when serializing tft_mapper_use.
Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore.
'Counter' object has no attribute 'name'
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transform_graph/5/.temp_path/tftransform_tmp/8409cab243d7462fa31fd614cd1aa125/saved_model.pb
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:No assets to write.
WARNING:tensorflow:Issue encountered when serializing tft_mapper_use.
Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore.
'Counter' object has no attribute 'name'
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transform_graph/5/.temp_path/tftransform_tmp/956c92a7027a4bf3b8390fe139717493/saved_model.pb
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:tensorflow:Tensorflow version (2.4.1) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:tensorflow:Tensorflow version (2.4.1) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended.
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transform_graph/5/.temp_path/tftransform_tmp/33e8f1825bb14e9f9bbf6afa22307acf/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transform_graph/5/.temp_path/tftransform_tmp/33e8f1825bb14e9f9bbf6afa22307acf/saved_model.pb
WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary"

WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary"

INFO:tensorflow:Saver not created because there are no variables in the graph to restore
WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary"

WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary"

INFO:tensorflow:Saver not created because there are no variables in the graph to restore
WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_2:0\022-vocab_compute_and_apply_vocabulary_vocabulary"

WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef"
value: "\n\013\n\tConst_4:0\022/vocab_compute_and_apply_vocabulary_1_vocabulary"

INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:absl:Running publisher for Transform
INFO:absl:MetadataStore with DB connection initialized

Przyjrzyjmy się artefaktom wyjściowym Transform . Ten komponent generuje dwa typy wyników:

  • transform_graph to wykres, który może wykonywać operacje przetwarzania wstępnego (ten wykres zostanie uwzględniony w modelach udostępniania i oceny).
  • transformed_examples reprezentuje wstępnie przetworzone dane szkoleniowe i oceny.
transform.outputs
{'transform_graph': Channel(
    type_name: TransformGraph
    artifacts: [Artifact(artifact: id: 5
type_id: 13
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transform_graph/5"
custom_properties {
  key: "name"
  value {
    string_value: "transform_graph"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Transform"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 13
name: "TransformGraph"
)]
    additional_properties: {}
    additional_custom_properties: {}
), 'transformed_examples': Channel(
    type_name: Examples
    artifacts: [Artifact(artifact: id: 6
type_id: 5
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/transformed_examples/5"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "transformed_examples"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Transform"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 5
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]
    additional_properties: {}
    additional_custom_properties: {}
), 'updated_analyzer_cache': Channel(
    type_name: TransformCache
    artifacts: [Artifact(artifact: id: 7
type_id: 14
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Transform/updated_analyzer_cache/5"
custom_properties {
  key: "name"
  value {
    string_value: "updated_analyzer_cache"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Transform"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 14
name: "TransformCache"
)]
    additional_properties: {}
    additional_custom_properties: {}
)}

Rzuć okiem na artefakt transform_graph . Wskazuje na katalog zawierający trzy podkatalogi.

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

Podkatalog transformed_metadata zawiera schemat wstępnie przetworzonych danych. Podkatalog transform_fn zawiera rzeczywisty wykres przetwarzania wstępnego. Podkatalog metadata zawiera schemat oryginalnych danych.

Możemy również przyjrzeć się trzem pierwszym przekształconym przykładom:

# Get the URI of the output artifact representing the transformed examples, which is a directory
train_uri = os.path.join(transform.outputs['transformed_examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 8
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 0.061060599982738495
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: -0.15886741876602173
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: -0.711848795413971
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 5
      }
    }
  }
}

features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 1.2521240711212158
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: 0.532160758972168
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: 0.5509493947029114
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 10
      }
    }
  }
}

features {
  feature {
    key: "company_xf"
    value {
      int64_list {
        value: 48
      }
    }
  }
  feature {
    key: "dropoff_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare_xf"
    value {
      float_list {
        value: 0.3873794376850128
      }
    }
  }
  feature {
    key: "payment_type_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area_xf"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude_xf"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "pickup_longitude_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "tips_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles_xf"
    value {
      float_list {
        value: 0.21955275535583496
      }
    }
  }
  feature {
    key: "trip_seconds_xf"
    value {
      float_list {
        value: 0.0019067147513851523
      }
    }
  }
  feature {
    key: "trip_start_day_xf"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour_xf"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month_xf"
    value {
      int64_list {
        value: 11
      }
    }
  }
}

Gdy składnik Transform przekształci dane w funkcje, a następnym krokiem jest wytrenowanie modelu.

Trener

Komponent Trainer wytrenuje model zdefiniowany w TensorFlow. Domyślny Trainer obsługuje Estimator API, aby użyć Keras API, musisz określić Generic Trainer przez ustawienie custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor) w custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor) .

Trainer przyjmuje jako dane wejściowe schemat ze SchemaGen , przekształcone dane i wykres z Transform , parametry szkoleniowe, a także moduł zawierający kod modelu zdefiniowany przez użytkownika.

Zobaczmy poniżej przykład kodu modelu zdefiniowanego przez użytkownika (wprowadzenie do interfejsów API TensorFlow Keras znajduje się w samouczku ):

_taxi_trainer_module_file = 'taxi_trainer.py'
%%writefile {_taxi_trainer_module_file}

from typing import List, Text

import os
import absl
import datetime
import tensorflow as tf
import tensorflow_transform as tft

from tfx.components.trainer.executor import TrainerFnArgs
from tfx.components.trainer.fn_args_utils import DataAccessor
from tfx_bsl.tfxio import dataset_options

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = taxi_constants.LABEL_KEY
_transformed_name = taxi_constants.transformed_name


def _transformed_names(keys):
  return [_transformed_name(key) for key in keys]


def _get_serve_tf_examples_fn(model, tf_transform_output):
  """Returns a function that parses a serialized tf.Example and applies TFT."""

  model.tft_layer = tf_transform_output.transform_features_layer()

  @tf.function
  def serve_tf_examples_fn(serialized_tf_examples):
    """Returns the output to be used in the serving signature."""
    feature_spec = tf_transform_output.raw_feature_spec()
    feature_spec.pop(_LABEL_KEY)
    parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
    transformed_features = model.tft_layer(parsed_features)
    return model(transformed_features)

  return serve_tf_examples_fn


def _input_fn(file_pattern: List[Text],
              data_accessor: DataAccessor,
              tf_transform_output: tft.TFTransformOutput,
              batch_size: int = 200) -> tf.data.Dataset:
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      dataset_options.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_transformed_name(_LABEL_KEY)),
      tf_transform_output.transformed_metadata.schema)


def _build_keras_model(hidden_units: List[int] = None) -> tf.keras.Model:
  """Creates a DNN Keras model for classifying taxi data.

  Args:
    hidden_units: [int], the layer sizes of the DNN (input layer first).

  Returns:
    A keras Model.
  """
  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _transformed_names(_VOCAB_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _transformed_names(_BUCKET_FEATURE_KEYS)
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(  # pylint: disable=g-complex-comprehension
          key,
          num_buckets=num_buckets,
          default_value=0) for key, num_buckets in zip(
              _transformed_names(_CATEGORICAL_FEATURE_KEYS),
              _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  indicator_column = [
      tf.feature_column.indicator_column(categorical_column)
      for categorical_column in categorical_columns
  ]

  model = _wide_and_deep_classifier(
      # TODO(b/139668410) replace with premade wide_and_deep keras model
      wide_columns=indicator_column,
      deep_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25])
  return model


def _wide_and_deep_classifier(wide_columns, deep_columns, dnn_hidden_units):
  """Build a simple keras wide and deep model.

  Args:
    wide_columns: Feature columns wrapped in indicator_column for wide (linear)
      part of the model.
    deep_columns: Feature columns for deep part of the model.
    dnn_hidden_units: [int], the layer sizes of the hidden DNN.

  Returns:
    A Wide and Deep Keras model
  """
  # Following values are hard coded for simplicity in this example,
  # However prefarably they should be passsed in as hparams.

  # Keras needs the feature definitions at compile time.
  # TODO(b/139081439): Automate generation of input layers from FeatureColumn.
  input_layers = {
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype=tf.float32)
      for colname in _transformed_names(_DENSE_FLOAT_FEATURE_KEYS)
  }
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_VOCAB_FEATURE_KEYS)
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_BUCKET_FEATURE_KEYS)
  })
  input_layers.update({
      colname: tf.keras.layers.Input(name=colname, shape=(), dtype='int32')
      for colname in _transformed_names(_CATEGORICAL_FEATURE_KEYS)
  })

  # TODO(b/161952382): Replace with Keras preprocessing layers.
  deep = tf.keras.layers.DenseFeatures(deep_columns)(input_layers)
  for numnodes in dnn_hidden_units:
    deep = tf.keras.layers.Dense(numnodes)(deep)
  wide = tf.keras.layers.DenseFeatures(wide_columns)(input_layers)

  output = tf.keras.layers.Dense(
      1, activation='sigmoid')(
          tf.keras.layers.concatenate([deep, wide]))

  model = tf.keras.Model(input_layers, output)
  model.compile(
      loss='binary_crossentropy',
      optimizer=tf.keras.optimizers.Adam(lr=0.001),
      metrics=[tf.keras.metrics.BinaryAccuracy()])
  model.summary(print_fn=absl.logging.info)
  return model


# TFX Trainer will call this function.
def run_fn(fn_args: TrainerFnArgs):
  """Train the model based on given args.

  Args:
    fn_args: Holds args used to train the model as name/value pairs.
  """
  # Number of nodes in the first layer of the DNN
  first_dnn_layer_size = 100
  num_dnn_layers = 4
  dnn_decay_factor = 0.7

  tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)

  train_dataset = _input_fn(fn_args.train_files, fn_args.data_accessor, 
                            tf_transform_output, 40)
  eval_dataset = _input_fn(fn_args.eval_files, fn_args.data_accessor, 
                           tf_transform_output, 40)

  model = _build_keras_model(
      # Construct layers sizes with exponetial decay
      hidden_units=[
          max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
          for i in range(num_dnn_layers)
      ])

  tensorboard_callback = tf.keras.callbacks.TensorBoard(
      log_dir=fn_args.model_run_dir, update_freq='batch')
  model.fit(
      train_dataset,
      steps_per_epoch=fn_args.train_steps,
      validation_data=eval_dataset,
      validation_steps=fn_args.eval_steps,
      callbacks=[tensorboard_callback])

  signatures = {
      'serving_default':
          _get_serve_tf_examples_fn(model,
                                    tf_transform_output).get_concrete_function(
                                        tf.TensorSpec(
                                            shape=[None],
                                            dtype=tf.string,
                                            name='examples')),
  }
  model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing taxi_trainer.py

Teraz przekazujemy ten kod modelu do komponentu Trainer i uruchamiamy go, aby wytrenować model.

trainer = Trainer(
    module_file=os.path.abspath(_taxi_trainer_module_file),
    custom_executor_spec=executor_spec.ExecutorClassSpec(GenericExecutor),
    examples=transform.outputs['transformed_examples'],
    transform_graph=transform.outputs['transform_graph'],
    schema=schema_gen.outputs['schema'],
    train_args=trainer_pb2.TrainArgs(num_steps=10000),
    eval_args=trainer_pb2.EvalArgs(num_steps=5000))
context.run(trainer)
WARNING:absl:From <ipython-input-1-47ec22ebd3e4>:3: The name tfx.components.base.executor_spec.ExecutorClassSpec is deprecated. Please use tfx.dsl.components.base.executor_spec.ExecutorClassSpec instead.
INFO:absl:Running driver for Trainer
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Trainer
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
INFO:absl:Loading source_path /tmpfs/src/temp/docs/tutorials/tfx/taxi_trainer.py as name user_module_1 because it has not been loaded before.
INFO:absl:Training model.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature company_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature fare_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature tips_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour_xf has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month_xf has a shape . Setting to DenseTensor.
INFO:absl:Model: "model"
INFO:absl:__________________________________________________________________________________________________
INFO:absl:Layer (type)                    Output Shape         Param #     Connected to                     
INFO:absl:==================================================================================================
INFO:absl:company_xf (InputLayer)         [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_census_tract_xf (InputL [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_community_area_xf (Inpu [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_latitude_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dropoff_longitude_xf (InputLaye [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:fare_xf (InputLayer)            [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:payment_type_xf (InputLayer)    [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_census_tract_xf (InputLa [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_community_area_xf (Input [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_latitude_xf (InputLayer) [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:pickup_longitude_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_miles_xf (InputLayer)      [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_seconds_xf (InputLayer)    [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_day_xf (InputLayer)  [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_hour_xf (InputLayer) [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:trip_start_month_xf (InputLayer [(None,)]            0                                            
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_features (DenseFeatures)  (None, 3)            0           company_xf[0][0]                 
INFO:absl:                                                                 dropoff_census_tract_xf[0][0]    
INFO:absl:                                                                 dropoff_community_area_xf[0][0]  
INFO:absl:                                                                 dropoff_latitude_xf[0][0]        
INFO:absl:                                                                 dropoff_longitude_xf[0][0]       
INFO:absl:                                                                 fare_xf[0][0]                    
INFO:absl:                                                                 payment_type_xf[0][0]            
INFO:absl:                                                                 pickup_census_tract_xf[0][0]     
INFO:absl:                                                                 pickup_community_area_xf[0][0]   
INFO:absl:                                                                 pickup_latitude_xf[0][0]         
INFO:absl:                                                                 pickup_longitude_xf[0][0]        
INFO:absl:                                                                 trip_miles_xf[0][0]              
INFO:absl:                                                                 trip_seconds_xf[0][0]            
INFO:absl:                                                                 trip_start_day_xf[0][0]          
INFO:absl:                                                                 trip_start_hour_xf[0][0]         
INFO:absl:                                                                 trip_start_month_xf[0][0]        
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense (Dense)                   (None, 100)          400         dense_features[0][0]             
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_1 (Dense)                 (None, 70)           7070        dense[0][0]                      
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_2 (Dense)                 (None, 48)           3408        dense_1[0][0]                    
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_3 (Dense)                 (None, 34)           1666        dense_2[0][0]                    
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_features_1 (DenseFeatures (None, 2127)         0           company_xf[0][0]                 
INFO:absl:                                                                 dropoff_census_tract_xf[0][0]    
INFO:absl:                                                                 dropoff_community_area_xf[0][0]  
INFO:absl:                                                                 dropoff_latitude_xf[0][0]        
INFO:absl:                                                                 dropoff_longitude_xf[0][0]       
INFO:absl:                                                                 fare_xf[0][0]                    
INFO:absl:                                                                 payment_type_xf[0][0]            
INFO:absl:                                                                 pickup_census_tract_xf[0][0]     
INFO:absl:                                                                 pickup_community_area_xf[0][0]   
INFO:absl:                                                                 pickup_latitude_xf[0][0]         
INFO:absl:                                                                 pickup_longitude_xf[0][0]        
INFO:absl:                                                                 trip_miles_xf[0][0]              
INFO:absl:                                                                 trip_seconds_xf[0][0]            
INFO:absl:                                                                 trip_start_day_xf[0][0]          
INFO:absl:                                                                 trip_start_hour_xf[0][0]         
INFO:absl:                                                                 trip_start_month_xf[0][0]        
INFO:absl:__________________________________________________________________________________________________
INFO:absl:concatenate (Concatenate)       (None, 2161)         0           dense_3[0][0]                    
INFO:absl:                                                                 dense_features_1[0][0]           
INFO:absl:__________________________________________________________________________________________________
INFO:absl:dense_4 (Dense)                 (None, 1)            2162        concatenate[0][0]                
INFO:absl:==================================================================================================
INFO:absl:Total params: 14,706
INFO:absl:Trainable params: 14,706
INFO:absl:Non-trainable params: 0
INFO:absl:__________________________________________________________________________________________________
10000/10000 [==============================] - 76s 7ms/step - loss: 0.3119 - binary_accuracy: 0.8462 - val_loss: 0.2224 - val_binary_accuracy: 0.8820
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Trainer/model/6/Format-Serving/assets
INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Trainer/model/6/Format-Serving. ModelRun written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Trainer/model_run/6
INFO:absl:Running publisher for Trainer
INFO:absl:MetadataStore with DB connection initialized

Analiza treningu z TensorBoard

Rzuć okiem na artefakt trenera. Wskazuje na katalog zawierający podkatalogi modelu.

model_artifact_dir = trainer.outputs['model'].get()[0].uri
pp.pprint(os.listdir(model_artifact_dir))
model_dir = os.path.join(model_artifact_dir, 'Format-Serving')
pp.pprint(os.listdir(model_dir))
['Format-Serving']
['variables', 'assets', 'saved_model.pb']

Opcjonalnie możemy podłączyć TensorBoard do Trainer, aby przeanalizować krzywe treningowe naszego modelu.

model_run_artifact_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_artifact_dir}

Ewaluator

Składnik Evaluator oblicza metryki wydajności modelu w zestawie ocen. Wykorzystuje bibliotekę TensorFlow Model Analysis . Evaluator może również opcjonalnie sprawdzić, czy nowo wyszkolony model jest lepszy niż poprzedni model. Jest to przydatne w ustawieniach potoku produkcji, w których można codziennie automatycznie trenować i sprawdzać model. W tym notatniku trenujemy tylko jeden model, więc Evaluator automatycznie Evaluator model jako „dobry”.

Evaluator przyjmie jako dane wejściowe dane z ExampleGen , wytrenowany model z Trainer i konfigurację wycinania. Konfiguracja wycinania umożliwia podzielenie metryk na wartości funkcji (np. Jak model radzi sobie podczas przejazdów taksówką rozpoczynających się o 8 rano w porównaniu z 20:00?). Zobacz przykład tej konfiguracji poniżej:

eval_config = tfma.EvalConfig(
    model_specs=[
        # This assumes a serving model with signature 'serving_default'. If
        # using estimator based EvalSavedModel, add signature_name: 'eval' and 
        # remove the label_key.
        tfma.ModelSpec(label_key='tips')
    ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            # To add validation thresholds for metrics saved with the model,
            # add them keyed by metric name to the thresholds map.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount'),
                tfma.MetricConfig(class_name='BinaryAccuracy',
                  threshold=tfma.MetricThreshold(
                      value_threshold=tfma.GenericValueThreshold(
                          lower_bound={'value': 0.5}),
                      # Change threshold will be ignored if there is no
                      # baseline model resolved from MLMD (first run).
                      change_threshold=tfma.GenericChangeThreshold(
                          direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                          absolute={'value': -1e-10})))
            ]
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

Następnie przekazujemy tę konfigurację do programu Evaluator i uruchamiamy ją.

# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.

# The model resolver is only required if performing model validation in addition
# to evaluation. In this case we validate against the latest blessed model. If
# no model has been blessed before (as in this case) the evaluator will make our
# candidate the first blessed model.
model_resolver = ResolverNode(
      instance_name='latest_blessed_model_resolver',
      resolver_class=latest_blessed_model_resolver.LatestBlessedModelResolver,
      model=Channel(type=Model),
      model_blessing=Channel(type=ModelBlessing))
context.run(model_resolver)

evaluator = Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    baseline_model=model_resolver.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
WARNING:absl:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tfx/components/common_nodes/resolver_node.py:74: The name tfx.components.common_nodes.resolver_node.ResolverNode is deprecated. Please use tfx.dsl.components.common.resolver.Resolver instead.
WARNING:absl:`instance_name` is deprecated, please set the node id directly using `with_id()` or the `.id` setter.
INFO:absl:Running driver for Resolver.latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running publisher for Resolver.latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running driver for Evaluator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Evaluator
ERROR:absl:There are change thresholds, but the baseline is missing. This is allowed only when rubber stamping (first run).
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Using /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Trainer/model/6/Format-Serving as  model.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f691c151400> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f6870789c18>).
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  label_key: "tips"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  metrics {
    class_name: "BinaryAccuracy"
    threshold {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
  model_names: ""
}
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f691f3a6080> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f691f455e10>).
Exception ignored in: <bound method CapturableResourceDeleter.__del__ of <tensorflow.python.training.tracking.tracking.CapturableResourceDeleter object at 0x7f698c2910b8>>
Traceback (most recent call last):
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/tracking/tracking.py", line 208, in __del__
    self._destroy_resource()
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py", line 828, in __call__
    result = self._call(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py", line 871, in _call
    self._initialize(args, kwds, add_initializers_to=initializers)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py", line 726, in _initialize
    *args, **kwds))
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 2969, in _get_concrete_function_internal_garbage_collected
    graph_function, _ = self._maybe_define_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 3361, in _maybe_define_function
    graph_function = self._create_graph_function(args, kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 3206, in _create_graph_function
    capture_by_value=self._capture_by_value),
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/framework/func_graph.py", line 990, in func_graph_from_py_func
    func_outputs = python_func(*func_args, **func_kwargs)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py", line 634, in wrapped_fn
    out = weak_wrapped_fn().__wrapped__(*args, **kwds)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/saved_model/function_deserialization.py", line 253, in restored_function_body
    return _call_concrete_function(function, inputs)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/saved_model/function_deserialization.py", line 75, in _call_concrete_function
    result = function._call_flat(tensor_inputs, function._captured_inputs)  # pylint: disable=protected-access
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/saved_model/load.py", line 116, in _call_flat
    cancellation_manager)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 1932, in _call_flat
    flat_outputs = forward_function.call(ctx, args_with_tangents)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 589, in call
    executor_type=executor_type)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/functional_ops.py", line 1206, in partitioned_call
    f.add_to_graph(graph)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/eager/function.py", line 505, in add_to_graph
    g._add_function(self)
  File "/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/framework/ops.py", line 3396, in _add_function
    gradient)
tensorflow.python.framework.errors_impl.InvalidArgumentError: 'func' argument to TF_GraphCopyFunction cannot be null
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f6843375cc0> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f68433b4c88>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f6840077630> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f684005d438>).
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f6415867438> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f6415800da0>).
WARNING:tensorflow:5 out of the last 5 calls to <function recreate_function.<locals>.restored_function_body at 0x7f698c2727b8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f68f0043cf8> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f68f0125198>).
WARNING:tensorflow:6 out of the last 6 calls to <function recreate_function.<locals>.restored_function_body at 0x7f6414e82bf8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f6414d8f5c0> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f6414d5b2e8>).
WARNING:tensorflow:7 out of the last 7 calls to <function recreate_function.<locals>.restored_function_body at 0x7f64143d9e18> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program.

Two checkpoint references resolved to different objects (<tensorflow.python.keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f64141c21d0> and <tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7f641420e3c8>).
WARNING:tensorflow:8 out of the last 8 calls to <function recreate_function.<locals>.restored_function_body at 0x7f63ff99abf8> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Evaluator/evaluation/8.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:113: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Evaluator/blessing/8.
INFO:absl:Running publisher for Evaluator
INFO:absl:MetadataStore with DB connection initialized

Przyjrzyjmy się teraz artefaktom wyjściowym programu Evaluator .

evaluator.outputs
{'evaluation': Channel(
    type_name: ModelEvaluation
    artifacts: [Artifact(artifact: id: 10
type_id: 20
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Evaluator/evaluation/8"
custom_properties {
  key: "name"
  value {
    string_value: "evaluation"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Evaluator"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 20
name: "ModelEvaluation"
)]
    additional_properties: {}
    additional_custom_properties: {}
), 'blessing': Channel(
    type_name: ModelBlessing
    artifacts: [Artifact(artifact: id: 11
type_id: 21
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Evaluator/blessing/8"
custom_properties {
  key: "blessed"
  value {
    int_value: 1
  }
}
custom_properties {
  key: "current_model"
  value {
    string_value: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Trainer/model/6"
  }
}
custom_properties {
  key: "current_model_id"
  value {
    int_value: 8
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "blessing"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Evaluator"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 21
name: "ModelBlessing"
)]
    additional_properties: {}
    additional_custom_properties: {}
)}

Korzystając z evaluation , możemy pokazać domyślną wizualizację metryk globalnych w całym zestawie ocen.

context.show(evaluator.outputs['evaluation'])

Aby zobaczyć wizualizację podzielonych metryk oceny, możemy bezpośrednio wywołać bibliotekę TensorFlow Model Analysis.

import tensorflow_model_analysis as tfma

# Get the TFMA output result path and load the result.
PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(PATH_TO_RESULT)

# Show data sliced along feature column trip_start_hour.
tfma.view.render_slicing_metrics(
    tfma_result, slicing_column='trip_start_hour')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'trip_start_hour:19',…

Ta wizualizacja pokazuje te same metryki, ale jest obliczana dla każdej wartości funkcji trip_start_hour zamiast dla całego zestawu wartościowania.

Analiza modelu TensorFlow obsługuje wiele innych wizualizacji, takich jak wskaźniki uczciwości i wykreślanie szeregów czasowych wydajności modelu. Aby dowiedzieć się więcej, zobacz samouczek .

Ponieważ dodaliśmy progi do naszej konfiguracji, dostępne są również dane wyjściowe walidacji. Obecność artefaktu blessing wskazuje, że nasz model przeszedł walidację. Ponieważ jest to pierwsza przeprowadzana walidacja, kandydat jest automatycznie błogosławiony.

blessing_uri = evaluator.outputs.blessing.get()[0].uri
!ls -l {blessing_uri}
total 0
-rw-rw-r-- 1 kbuilder kbuilder 0 Apr 22 09:09 BLESSED

Teraz można również zweryfikować sukces, ładując rekord wyniku weryfikacji:

PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(PATH_TO_RESULT))
validation_ok: true
validation_details {
  slicing_details {
    slicing_spec {
    }
    num_matching_slices: 25
  }
}

Popychacz

Komponent Pusher znajduje się zwykle na końcu potoku TFX. Sprawdza, czy model przeszedł walidację, a jeśli tak, eksportuje model do _serving_model_dir .

pusher = Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=pusher_pb2.PushDestination(
        filesystem=pusher_pb2.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)
INFO:absl:Running driver for Pusher
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for Pusher
INFO:absl:Model version: 1619082541
INFO:absl:Model written to serving path /tmp/tmp4c27h8li/serving_model/taxi_simple/1619082541.
INFO:absl:Model pushed to /tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Pusher/pushed_model/9.
INFO:absl:Running publisher for Pusher
INFO:absl:MetadataStore with DB connection initialized

Przyjrzyjmy się artefaktom wyjściowym Pusher .

pusher.outputs
{'pushed_model': Channel(
    type_name: PushedModel
    artifacts: [Artifact(artifact: id: 12
type_id: 23
uri: "/tmp/tfx-interactive-2021-04-22T09_06_46.788544-avpygsel/Pusher/pushed_model/9"
custom_properties {
  key: "name"
  value {
    string_value: "pushed_model"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Pusher"
  }
}
custom_properties {
  key: "pushed"
  value {
    int_value: 1
  }
}
custom_properties {
  key: "pushed_destination"
  value {
    string_value: "/tmp/tmp4c27h8li/serving_model/taxi_simple/1619082541"
  }
}
custom_properties {
  key: "pushed_version"
  value {
    string_value: "1619082541"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "0.29.0"
  }
}
state: LIVE
, artifact_type: id: 23
name: "PushedModel"
)]
    additional_properties: {}
    additional_custom_properties: {}
)}

W szczególności Pusher wyeksportuje Twój model w formacie SavedModel, który wygląda następująco:

push_uri = pusher.outputs.pushed_model.get()[0].uri
model = tf.saved_model.load(push_uri)

for item in model.signatures.items():
  pp.pprint(item)
WARNING:tensorflow:9 out of the last 9 calls to <function recreate_function.<locals>.restored_function_body at 0x7f63fe607598> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for  more details.
('serving_default',
 <ConcreteFunction signature_wrapper(*, examples) at 0x7F63FF54A518>)

Zakończyliśmy naszą wycieczkę po wbudowanych komponentach TFX!