يوم مجتمع ML هو 9 نوفمبر! الانضمام إلينا للحصول على التحديثات من TensorFlow، JAX، وأكثر معرفة المزيد

التعلم المهيكل العصبي القائم على الرسم البياني في TFX

يصف هذا البرنامج التعليمي الرسم البياني تسوية من التعلم العصبية الهيكلية إطار ويدل على سير العمل نهاية إلى نهاية للتصنيف المعنويات في خط أنابيب TFX.

ملخص

يستعرض هذا يصنف دفتر الفيلم كما إيجابية أو سلبية باستخدام نص المراجعة. وهذا مثال للتصنيف ثنائي، وهو نوع مهم وقابلة للتطبيق على نطاق واسع من مشكلة تعلم الآلة.

سوف نوضح استخدام تنظيم الرسم البياني في هذا الكمبيوتر الدفتري من خلال إنشاء رسم بياني من المدخلات المحددة. الوصفة العامة لبناء نموذج منظم للرسم البياني باستخدام إطار عمل التعلم المهيكل العصبي (NSL) عندما لا يحتوي الإدخال على رسم بياني واضح كما يلي:

  1. إنشاء حفلات الزفاف لكل عينة نصية في الإدخال. ويمكن القيام بذلك باستخدام نماذج المدربين قبل مثل word2vec ، دوار ، بيرت الخ
  2. أنشئ رسمًا بيانيًا بناءً على عمليات التضمين هذه باستخدام مقياس تشابه مثل المسافة "L2" ومسافة "جيب التمام" وما إلى ذلك. تتوافق العقد في الرسم البياني مع العينات والحواف في الرسم البياني تتوافق مع التشابه بين أزواج من العينات.
  3. قم بإنشاء بيانات التدريب من الرسم البياني المركب أعلاه وعينة الميزات. ستحتوي بيانات التدريب الناتجة على ميزات الجوار بالإضافة إلى ميزات العقدة الأصلية.
  4. قم بإنشاء شبكة عصبية كنموذج أساسي باستخدام المقدرون.
  5. التفاف قاعدة نموذجية مع add_graph_regularization الدالة المجمع، والتي يتم توفيرها من قبل إطار قانون الأمن القومي، لإنشاء رسم بياني مقدر النموذج الجديد. سيتضمن هذا النموذج الجديد خسارة تنظيم الرسم البياني كمصطلح التنظيم في هدف التدريب الخاص به.
  6. تدريب وتقييم نموذج مقدر الرسم البياني.

في هذا البرنامج التعليمي ، نقوم بدمج سير العمل أعلاه في خط أنابيب TFX باستخدام العديد من مكونات TFX المخصصة بالإضافة إلى مكون مدرب مخصص منظم للرسم البياني.

يوجد أدناه التخطيطي لخط أنابيب TFX الخاص بنا. تمثل الصناديق البرتقالية مكونات TFX الجاهزة بينما تمثل الصناديق الوردية مكونات TFX المخصصة.

خط أنابيب TFX

ترقية النقطة

لتجنب ترقية Pip في نظام عند التشغيل محليًا ، تحقق للتأكد من أننا نعمل في Colab. يمكن بالطبع ترقية الأنظمة المحلية بشكل منفصل.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

قم بتثبيت الحزم المطلوبة

!pip install -q -U \
  tfx==1.2.0 \
  neural-structured-learning \
  tensorflow-hub \
  tensorflow-datasets

هل أعدت تشغيل وقت التشغيل؟

إذا كنت تستخدم Google Colab ، في المرة الأولى التي تقوم فيها بتشغيل الخلية أعلاه ، يجب إعادة تشغيل وقت التشغيل (Runtime> Restart runtime ...). هذا بسبب الطريقة التي يقوم بها كولاب بتحميل الحزم.

التبعيات والواردات

import apache_beam as beam
import gzip as gzip_lib
import numpy as np
import os
import pprint
import shutil
import tempfile
import urllib
import uuid
pp = pprint.PrettyPrinter()

import tensorflow as tf
import neural_structured_learning as nsl

import tfx
from tfx.components.evaluator.component import Evaluator
from tfx.components.example_gen.import_example_gen.component import ImportExampleGen
from tfx.components.example_validator.component import ExampleValidator
from tfx.components.model_validator.component import ModelValidator
from tfx.components.pusher.component import Pusher
from tfx.components.schema_gen.component import SchemaGen
from tfx.components.statistics_gen.component import StatisticsGen
from tfx.components.trainer import executor as trainer_executor
from tfx.components.trainer.component import Trainer
from tfx.components.transform.component import Transform
from tfx.dsl.components.base import executor_spec
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext
from tfx.proto import evaluator_pb2
from tfx.proto import example_gen_pb2
from tfx.proto import pusher_pb2
from tfx.proto import trainer_pb2

from tfx.types import artifact
from tfx.types import artifact_utils
from tfx.types import channel
from tfx.types import standard_artifacts
from tfx.types.standard_artifacts import Examples

from tfx.dsl.component.experimental.annotations import InputArtifact
from tfx.dsl.component.experimental.annotations import OutputArtifact
from tfx.dsl.component.experimental.annotations import Parameter
from tfx.dsl.component.experimental.decorators import component

from tensorflow_metadata.proto.v0 import anomalies_pb2
from tensorflow_metadata.proto.v0 import schema_pb2
from tensorflow_metadata.proto.v0 import statistics_pb2

import tensorflow_data_validation as tfdv
import tensorflow_transform as tft
import tensorflow_model_analysis as tfma
import tensorflow_hub as hub
import tensorflow_datasets as tfds

print("TF Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print(
    "GPU is",
    "available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")
print("NSL Version: ", nsl.__version__)
print("TFX Version: ", tfx.__version__)
print("TFDV version: ", tfdv.__version__)
print("TFT version: ", tft.__version__)
print("TFMA version: ", tfma.__version__)
print("Hub version: ", hub.__version__)
print("Beam version: ", beam.__version__)
TF Version:  2.5.1
Eager mode:  True
GPU is available
NSL Version:  1.3.1
TFX Version:  1.2.0
TFDV version:  1.2.0
TFT version:  1.2.0
TFMA version:  0.33.0
Hub version:  0.12.0
Beam version:  2.32.0

مجموعة بيانات IMDB

و بيانات IMDB يحتوي على النص من 50000 يستعرض الفيلم من قاعدة بيانات الأفلام على الإنترنت . يتم تقسيم هذه إلى 25000 مراجعة للتدريب و 25000 مراجعة للاختبار. ومتوازنة تدريب واختبار مجموعات، وهذا يعني أنها تحتوي على عدد متساو من الاستعراضات إيجابية وسلبية. علاوة على ذلك ، هناك 50000 مراجعة إضافية للأفلام غير المسماة.

قم بتنزيل مجموعة بيانات IMDB المجهزة مسبقًا

يقوم الكود التالي بتنزيل مجموعة بيانات IMDB (أو يستخدم نسخة مخبأة إذا تم تنزيلها بالفعل) باستخدام TFDS. لتسريع هذا الكمبيوتر الدفتري ، سنستخدم فقط 10000 مراجعة معنونة و 10000 مراجعة غير مسماة للتدريب ، و 10000 مراجعة اختبار للتقييم.

train_set, eval_set = tfds.load(
    "imdb_reviews:1.0.0",
    split=["train[:10000]+unsupervised[:10000]", "test[:10000]"],
    shuffle_files=False)

دعونا نلقي نظرة على بعض المراجعات من مجموعة التدريب:

for tfrecord in train_set.take(4):
  print("Review: {}".format(tfrecord["text"].numpy().decode("utf-8")[:300]))
  print("Label: {}\n".format(tfrecord["label"].numpy()))
Review: This was an absolutely terrible movie. Don't be lured in by Christopher Walken or Michael Ironside. Both are great actors, but this must simply be their worst role in history. Even their great acting could not redeem this movie's ridiculous storyline. This movie is an early nineties US propaganda pi
Label: 0

Review: I have been known to fall asleep during films, but this is usually due to a combination of things including, really tired, being warm and comfortable on the sette and having just eaten a lot. However on this occasion I fell asleep because the film was rubbish. The plot development was constant. Cons
Label: 0

Review: Mann photographs the Alberta Rocky Mountains in a superb fashion, and Jimmy Stewart and Walter Brennan give enjoyable performances as they always seem to do. <br /><br />But come on Hollywood - a Mountie telling the people of Dawson City, Yukon to elect themselves a marshal (yes a marshal!) and to e
Label: 0

Review: This is the kind of film for a snowy Sunday afternoon when the rest of the world can go ahead with its own business as you descend into a big arm-chair and mellow for a couple of hours. Wonderful performances from Cher and Nicolas Cage (as always) gently row the plot along. There are no rapids to cr
Label: 1
def _dict_to_example(instance):
  """Decoded CSV to tf example."""
  feature = {}
  for key, value in instance.items():
    if value is None:
      feature[key] = tf.train.Feature()
    elif value.dtype == np.integer:
      feature[key] = tf.train.Feature(
          int64_list=tf.train.Int64List(value=value.tolist()))
    elif value.dtype == np.float32:
      feature[key] = tf.train.Feature(
          float_list=tf.train.FloatList(value=value.tolist()))
    else:
      feature[key] = tf.train.Feature(
          bytes_list=tf.train.BytesList(value=value.tolist()))
  return tf.train.Example(features=tf.train.Features(feature=feature))


examples_path = tempfile.mkdtemp(prefix="tfx-data")
train_path = os.path.join(examples_path, "train.tfrecord")
eval_path = os.path.join(examples_path, "eval.tfrecord")

for path, dataset in [(train_path, train_set), (eval_path, eval_set)]:
  with tf.io.TFRecordWriter(path) as writer:
    for example in dataset:
      writer.write(
          _dict_to_example({
              "label": np.array([example["label"].numpy()]),
              "text": np.array([example["text"].numpy()]),
          }).SerializeToString())
/home/kbuilder/.local/lib/python3.7/site-packages/ipykernel_launcher.py:7: DeprecationWarning: Converting `np.integer` or `np.signedinteger` to a dtype is deprecated. The current result is `np.dtype(np.int_)` which is not strictly correct. Note that the result depends on the system. To ensure stable results use may want to use `np.int64` or `np.int32`.
  import sys

قم بتشغيل مكونات TFX بشكل تفاعلي

في الخلايا التي تتبع سوف بناء مكونات TFX وتشغيل كل واحد تفاعلي داخل InteractiveContext للحصول ExecutionResult الكائنات. يعكس هذا عملية قيام منسق بتشغيل المكونات في TFX DAG بناءً على وقت استيفاء تبعيات كل مكون.

context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/metadata.sqlite.

مكون ExampleGen

في أي عملية تطوير تعلم الآلة ، فإن الخطوة الأولى عند بدء تطوير الكود هي استيعاب مجموعات بيانات التدريب والاختبار. و ExampleGen عنصر يجلب البيانات في خط أنابيب TFX.

قم بإنشاء مكون ExampleGen وتشغيله.

input_config = example_gen_pb2.Input(splits=[
    example_gen_pb2.Input.Split(name='train', pattern='train.tfrecord'),
    example_gen_pb2.Input.Split(name='eval', pattern='eval.tfrecord')
])

example_gen = ImportExampleGen(input_base=examples_path, input_config=input_config)

context.run(example_gen, enable_cache=True)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
for artifact in example_gen.outputs['examples'].get():
  print(artifact)

print('\nexample_gen.outputs is a {}'.format(type(example_gen.outputs)))
print(example_gen.outputs)

print(example_gen.outputs['examples'].get()[0].split_names)
Artifact(artifact: id: 1
type_id: 14
uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/ImportExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:train,num_files:1,total_bytes:27706811,xor_checksum:1632967670,sum_checksum:1632967670\nsplit:eval,num_files:1,total_bytes:13374744,xor_checksum:1632967673,sum_checksum:1632967673"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
, artifact_type: id: 14
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)

example_gen.outputs is a <class 'dict'>
{'examples': Channel(
    type_name: Examples
    artifacts: [Artifact(artifact: id: 1
type_id: 14
uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/ImportExampleGen/examples/1"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "file_format"
  value {
    string_value: "tfrecords_gzip"
  }
}
custom_properties {
  key: "input_fingerprint"
  value {
    string_value: "split:train,num_files:1,total_bytes:27706811,xor_checksum:1632967670,sum_checksum:1632967670\nsplit:eval,num_files:1,total_bytes:13374744,xor_checksum:1632967673,sum_checksum:1632967673"
  }
}
custom_properties {
  key: "payload_format"
  value {
    string_value: "FORMAT_TF_EXAMPLE"
  }
}
custom_properties {
  key: "span"
  value {
    int_value: 0
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
, artifact_type: id: 14
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)]
    additional_properties: {}
    additional_custom_properties: {}
)}
["train", "eval"]

تشتمل مخرجات المكون على قطعتين:

  • أمثلة التدريب (10000 مراجعة مصنفة + 10000 مراجعة غير مصنفة)
  • أمثلة التقييم (10000 مراجعة معنونة)

المكون المخصص IdentifyExamples

لاستخدام NSL ، سنحتاج إلى أن يكون لكل مثيل معرف فريد. نقوم بإنشاء مكون مخصص يضيف مثل هذا المعرف الفريد لجميع المثيلات عبر جميع الانقسامات. نحن الاستفادة أباتشي شعاع لتكون قادرة على توسيع نطاق بسهولة إلى مجموعات البيانات الكبيرة إذا لزم الأمر.

def make_example_with_unique_id(example, id_feature_name):
  """Adds a unique ID to the given `tf.train.Example` proto.

  This function uses Python's 'uuid' module to generate a universally unique
  identifier for each example.

  Args:
    example: An instance of a `tf.train.Example` proto.
    id_feature_name: The name of the feature in the resulting `tf.train.Example`
      that will contain the unique identifier.

  Returns:
    A new `tf.train.Example` proto that includes a unique identifier as an
    additional feature.
  """
  result = tf.train.Example()
  result.CopyFrom(example)
  unique_id = uuid.uuid4()
  result.features.feature.get_or_create(
      id_feature_name).bytes_list.MergeFrom(
          tf.train.BytesList(value=[str(unique_id).encode('utf-8')]))
  return result


@component
def IdentifyExamples(orig_examples: InputArtifact[Examples],
                     identified_examples: OutputArtifact[Examples],
                     id_feature_name: Parameter[str],
                     component_name: Parameter[str]) -> None:

  # Get a list of the splits in input_data
  splits_list = artifact_utils.decode_split_names(
      split_names=orig_examples.split_names)
  # For completeness, encode the splits names and payload_format.
  # We could also just use input_data.split_names.
  identified_examples.split_names = artifact_utils.encode_split_names(
      splits=splits_list)
  # TODO(b/168616829): Remove populating payload_format after tfx 0.25.0.
  identified_examples.set_string_custom_property(
      "payload_format",
      orig_examples.get_string_custom_property("payload_format"))


  for split in splits_list:
    input_dir = artifact_utils.get_split_uri([orig_examples], split)
    output_dir = artifact_utils.get_split_uri([identified_examples], split)
    os.mkdir(output_dir)
    with beam.Pipeline() as pipeline:
      (pipeline
       | 'ReadExamples' >> beam.io.ReadFromTFRecord(
           os.path.join(input_dir, '*'),
           coder=beam.coders.coders.ProtoCoder(tf.train.Example))
       | 'AddUniqueId' >> beam.Map(make_example_with_unique_id, id_feature_name)
       | 'WriteIdentifiedExamples' >> beam.io.WriteToTFRecord(
           file_path_prefix=os.path.join(output_dir, 'data_tfrecord'),
           coder=beam.coders.coders.ProtoCoder(tf.train.Example),
           file_name_suffix='.gz'))

  return
identify_examples = IdentifyExamples(
    orig_examples=example_gen.outputs['examples'],
    component_name=u'IdentifyExamples',
    id_feature_name=u'id')
context.run(identify_examples, enable_cache=False)
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.

مكون StatisticsGen

و StatisticsGen عنصر يحسب الإحصاء الوصفي للبيانات الخاصة بك. يمكن تصور الإحصاءات التي تنشئها للمراجعة ، وتستخدم على سبيل المثال للتحقق من الصحة واستنتاج مخطط.

قم بإنشاء مكون StatisticsGen وتشغيله.

# Computes statistics over data for visualization and example validation.
statistics_gen = StatisticsGen(
    examples=identify_examples.outputs["identified_examples"])
context.run(statistics_gen, enable_cache=True)
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.

مكون SchemaGen

و SchemaGen عنصر يولد مخطط للبيانات الخاصة بك على أساس الإحصاءات من StatisticsGen. يحاول استنتاج أنواع البيانات لكل ميزة من ميزاتك ونطاقات القيم القانونية للمعالم الفئوية.

قم بإنشاء مكون SchemaGen وقم بتشغيله.

# Generates schema based on statistics files.
schema_gen = SchemaGen(
    statistics=statistics_gen.outputs['statistics'], infer_feature_shape=False)
context.run(schema_gen, enable_cache=True)
WARNING: Logging before InitGoogleLogging() is written to STDERR
I0930 02:08:13.915277 17651 rdbms_metadata_access_object.cc:686] No property is defined for the Type

القطع الأثرية التي تم إنشاؤها هو مجرد schema.pbtxt تحتوي على تمثيل نص schema_pb2.Schema protobuf:

train_uri = schema_gen.outputs['schema'].get()[0].uri
schema_filename = os.path.join(train_uri, 'schema.pbtxt')
schema = tfx.utils.io_utils.parse_pbtxt_file(
    file_name=schema_filename, message=schema_pb2.Schema())

ويمكن تصور استخدام tfdv.display_schema() (ونحن سوف ننظر في هذا بمزيد من التفصيل في مختبر لاحقة):

tfdv.display_schema(schema)

مكون ExampleValidator

و ExampleValidator يؤدي الشذوذ الكشف، استنادا إلى إحصاءات من StatisticsGen والمخطط من SchemaGen. يبحث عن مشاكل مثل القيم المفقودة أو القيم من النوع الخطأ أو القيم الفئوية خارج مجال القيم المقبولة.

قم بإنشاء مكون ExampleValidator وقم بتشغيله.

# Performs anomaly detection based on statistics and data schema.
validate_stats = ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(validate_stats, enable_cache=False)

مكون SynthesizeGraph

يتضمن إنشاء الرسم البياني إنشاء زخارف لعينات نصية ثم استخدام وظيفة التشابه لمقارنة الزخارف.

سوف نستخدم pretrained التضمينات دوارة لخلق التضمينات في tf.train.Example تنسيق كل عينة في المدخلات. وسوف تخزين التضمينات مما أدى إلى TFRecord شكل جنبا إلى جنب مع ID العينة. هذا مهم وسيسمح لنا بمطابقة عينات من التضمينات مع العقد المقابلة في الرسم البياني لاحقًا.

بمجرد أن نحصل على عينات من التضمينات ، سنستخدمها لبناء رسم بياني للتشابه ، أي أن العقد في هذا الرسم البياني سوف تتوافق مع العينات وستتوافق الحواف في هذا الرسم البياني مع التشابه بين أزواج العقد.

يوفر التعلم المهيكل العصبي مكتبة بناء الرسم البياني لإنشاء رسم بياني بناءً على نماذج التضمين. ويستخدم التشابه جيب التمام كمقياس لمقارنة التشابه التضمينات وحواف بناء بينهما. كما يسمح لنا بتحديد حد التشابه ، والذي يمكن استخدامه لتجاهل الحواف غير المتشابهة من الرسم البياني النهائي. في المثال التالي ، باستخدام 0.99 كحد تشابه ، ينتهي بنا المطاف برسم بياني به 111066 حافة ثنائية الاتجاه.

swivel_url = 'https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1'
hub_layer = hub.KerasLayer(swivel_url, input_shape=[], dtype=tf.string)


def _bytes_feature(value):
  """Returns a bytes_list from a string / byte."""
  return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))


def _float_feature(value):
  """Returns a float_list from a float / double."""
  return tf.train.Feature(float_list=tf.train.FloatList(value=value))


def create_embedding_example(example):
  """Create tf.Example containing the sample's embedding and its ID."""
  sentence_embedding = hub_layer(tf.sparse.to_dense(example['text']))

  # Flatten the sentence embedding back to 1-D.
  sentence_embedding = tf.reshape(sentence_embedding, shape=[-1])

  feature_dict = {
      'id': _bytes_feature(tf.sparse.to_dense(example['id']).numpy()),
      'embedding': _float_feature(sentence_embedding.numpy().tolist())
  }

  return tf.train.Example(features=tf.train.Features(feature=feature_dict))


def create_dataset(uri):
  tfrecord_filenames = [os.path.join(uri, name) for name in os.listdir(uri)]
  return tf.data.TFRecordDataset(tfrecord_filenames, compression_type='GZIP')


def create_embeddings(train_path, output_path):
  dataset = create_dataset(train_path)
  embeddings_path = os.path.join(output_path, 'embeddings.tfr')

  feature_map = {
      'label': tf.io.FixedLenFeature([], tf.int64),
      'id': tf.io.VarLenFeature(tf.string),
      'text': tf.io.VarLenFeature(tf.string)
  }

  with tf.io.TFRecordWriter(embeddings_path) as writer:
    for tfrecord in dataset:
      tensor_dict = tf.io.parse_single_example(tfrecord, feature_map)
      embedding_example = create_embedding_example(tensor_dict)
      writer.write(embedding_example.SerializeToString())


def build_graph(output_path, similarity_threshold):
  embeddings_path = os.path.join(output_path, 'embeddings.tfr')
  graph_path = os.path.join(output_path, 'graph.tsv')
  graph_builder_config = nsl.configs.GraphBuilderConfig(
      similarity_threshold=similarity_threshold,
      lsh_splits=32,
      lsh_rounds=15,
      random_seed=12345)
  nsl.tools.build_graph_from_config([embeddings_path], graph_path,
                                    graph_builder_config)
"""Custom Artifact type"""


class SynthesizedGraph(tfx.types.artifact.Artifact):
  """Output artifact of the SynthesizeGraph component"""
  TYPE_NAME = 'SynthesizedGraphPath'
  PROPERTIES = {
      'span': standard_artifacts.SPAN_PROPERTY,
      'split_names': standard_artifacts.SPLIT_NAMES_PROPERTY,
  }


@component
def SynthesizeGraph(identified_examples: InputArtifact[Examples],
                    synthesized_graph: OutputArtifact[SynthesizedGraph],
                    similarity_threshold: Parameter[float],
                    component_name: Parameter[str]) -> None:

  # Get a list of the splits in input_data
  splits_list = artifact_utils.decode_split_names(
      split_names=identified_examples.split_names)

  # We build a graph only based on the 'Split-train' split which includes both
  # labeled and unlabeled examples.
  train_input_examples_uri = os.path.join(identified_examples.uri,
                                          'Split-train')
  output_graph_uri = os.path.join(synthesized_graph.uri, 'Split-train')
  os.mkdir(output_graph_uri)

  print('Creating embeddings...')
  create_embeddings(train_input_examples_uri, output_graph_uri)

  print('Synthesizing graph...')
  build_graph(output_graph_uri, similarity_threshold)

  synthesized_graph.split_names = artifact_utils.encode_split_names(
      splits=['Split-train'])

  return
synthesize_graph = SynthesizeGraph(
    identified_examples=identify_examples.outputs['identified_examples'],
    component_name=u'SynthesizeGraph',
    similarity_threshold=0.99)
context.run(synthesize_graph, enable_cache=False)
Creating embeddings...
Synthesizing graph...
train_uri = synthesize_graph.outputs["synthesized_graph"].get()[0].uri
os.listdir(train_uri)
['Split-train']
graph_path = os.path.join(train_uri, "Split-train", "graph.tsv")
print("node 1\t\t\t\t\tnode 2\t\t\t\t\tsimilarity")
!head {graph_path}
print("...")
!tail {graph_path}
node 1                  node 2                  similarity
bd60659d-a08b-4054-8e82-db8c5eb71a31    14963152-12e9-440d-9cec-9dbbe5d5215d    0.990184
14963152-12e9-440d-9cec-9dbbe5d5215d    bd60659d-a08b-4054-8e82-db8c5eb71a31    0.990184
bd60659d-a08b-4054-8e82-db8c5eb71a31    44c5fc04-d877-426a-bd6d-a1fb80ed7c12    0.990838
44c5fc04-d877-426a-bd6d-a1fb80ed7c12    bd60659d-a08b-4054-8e82-db8c5eb71a31    0.990838
f43ff21d-fd62-4ed3-ae9e-b95a542a4bb6    44c5fc04-d877-426a-bd6d-a1fb80ed7c12    0.991234
44c5fc04-d877-426a-bd6d-a1fb80ed7c12    f43ff21d-fd62-4ed3-ae9e-b95a542a4bb6    0.991234
84aa5b8a-300f-4fa8-8fdb-dea5dd0a0171    7ee862d7-6583-4438-a539-f7ca63aa6e7a    0.992823
7ee862d7-6583-4438-a539-f7ca63aa6e7a    84aa5b8a-300f-4fa8-8fdb-dea5dd0a0171    0.992823
ebc110f3-2d71-4f56-bbf4-4061540466c3    83649cdc-9635-44dc-bf91-b948ac9280ed    0.992471
83649cdc-9635-44dc-bf91-b948ac9280ed    ebc110f3-2d71-4f56-bbf4-4061540466c3    0.992471
...
dfb9603d-d510-450d-93bf-1b926e2eef00    dab9ecae-4449-42d3-a9e8-8a377f02decd    0.991879
dab9ecae-4449-42d3-a9e8-8a377f02decd    dfb9603d-d510-450d-93bf-1b926e2eef00    0.991879
19f6b839-2a71-4c27-a0df-e0de04f39b1c    a1f910b7-f707-4345-88eb-50f3cc1713f8    0.991046
a1f910b7-f707-4345-88eb-50f3cc1713f8    19f6b839-2a71-4c27-a0df-e0de04f39b1c    0.991046
8026111b-aa75-4b5e-bdc2-2dbd82b81380    3a22d7b5-f3d4-4302-90d0-8c84892a6fcd    0.991198
3a22d7b5-f3d4-4302-90d0-8c84892a6fcd    8026111b-aa75-4b5e-bdc2-2dbd82b81380    0.991198
28bc7b14-2efa-49a8-baa0-951d5937055f    0539a5a8-7a79-4bae-bf3e-9a2155c0204e    0.990260
0539a5a8-7a79-4bae-bf3e-9a2155c0204e    28bc7b14-2efa-49a8-baa0-951d5937055f    0.990260
a43774bd-dadc-4a5e-be1a-4c63019e48f8    22b60399-41a0-4805-b838-d2c97f55e1f3    0.991317
22b60399-41a0-4805-b838-d2c97f55e1f3    a43774bd-dadc-4a5e-be1a-4c63019e48f8    0.991317
wc -l {graph_path}
222132 /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/SynthesizeGraph/synthesized_graph/6/Split-train/graph.tsv

مكون التحويل

و Transform ينفذ المكونة التحولات البيانات والهندسة الميزة. تتضمن النتائج رسمًا بيانيًا TensorFlow للإدخال يتم استخدامه أثناء التدريب وتقديم المعالجة المسبقة للبيانات قبل التدريب أو الاستدلال. يصبح هذا الرسم البياني جزءًا من SavedModel الناتج عن تدريب النموذج. نظرًا لاستخدام نفس الرسم البياني للإدخال لكل من التدريب والخدمة ، فإن المعالجة المسبقة ستكون دائمًا كما هي ، وستحتاج فقط إلى كتابتها مرة واحدة.

يتطلب مكون التحويل رمزًا أكثر من العديد من المكونات الأخرى بسبب التعقيد التعسفي لهندسة الميزات التي قد تحتاجها للبيانات و / أو النموذج الذي تعمل به. يتطلب توفر ملفات التعليمات البرمجية التي تحدد المعالجة المطلوبة.

ستتضمن كل عينة الميزات الثلاث التالية:

  1. معرف: معرف عقدة من العينة.
  2. text_xf: لائحة int64 تحتوي على كلمة معرفات.
  3. label_xf: A المفرد int64 تحديد الفئة المستهدفة من الاستعراض: 0 = سلبية، 1 = إيجابي.

دعونا تحدد وحدة نمطية تحتوي على preprocessing_fn() وظيفة التي سنقطعها إلى Transform العنصر:

_transform_module_file = 'imdb_transform.py'
%%writefile {_transform_module_file}

import tensorflow as tf

import tensorflow_transform as tft

SEQUENCE_LENGTH = 100
VOCAB_SIZE = 10000
OOV_SIZE = 100

def tokenize_reviews(reviews, sequence_length=SEQUENCE_LENGTH):
  reviews = tf.strings.lower(reviews)
  reviews = tf.strings.regex_replace(reviews, r" '| '|^'|'$", " ")
  reviews = tf.strings.regex_replace(reviews, "[^a-z' ]", " ")
  tokens = tf.strings.split(reviews)[:, :sequence_length]
  start_tokens = tf.fill([tf.shape(reviews)[0], 1], "<START>")
  end_tokens = tf.fill([tf.shape(reviews)[0], 1], "<END>")
  tokens = tf.concat([start_tokens, tokens, end_tokens], axis=1)
  tokens = tokens[:, :sequence_length]
  tokens = tokens.to_tensor(default_value="<PAD>")
  pad = sequence_length - tf.shape(tokens)[1]
  tokens = tf.pad(tokens, [[0, 0], [0, pad]], constant_values="<PAD>")
  return tf.reshape(tokens, [-1, sequence_length])

def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.

  Args:
    inputs: map from feature keys to raw not-yet-transformed features.

  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  outputs["id"] = inputs["id"]
  tokens = tokenize_reviews(_fill_in_missing(inputs["text"], ''))
  outputs["text_xf"] = tft.compute_and_apply_vocabulary(
      tokens,
      top_k=VOCAB_SIZE,
      num_oov_buckets=OOV_SIZE)
  outputs["label_xf"] = _fill_in_missing(inputs["label"], -1)
  return outputs

def _fill_in_missing(x, default_value):
  """Replace missing values in a SparseTensor.

  Fills in missing values of `x` with the default_value.

  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
    default_value: the value with which to replace the missing values.

  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing imdb_transform.py

إنشاء وتشغيل Transform عنصر، مشيرا إلى الملفات التي تم إنشاؤها أعلاه.

# Performs transformations and feature engineering in training and serving.
transform = Transform(
    examples=identify_examples.outputs['identified_examples'],
    schema=schema_gen.outputs['schema'],
    module_file=_transform_module_file)
context.run(transform, enable_cache=True)
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying imdb_transform.py -> build/lib
installing to /tmp/tmp4w6ytsiq
running install
running install_lib
copying build/lib/imdb_transform.py -> /tmp/tmp4w6ytsiq
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing tfx_user_code_Transform.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmp4w6ytsiq/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50-py3.7.egg-info
running install_scripts
creating /tmp/tmp4w6ytsiq/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50.dist-info/WHEEL
creating '/tmp/tmpqak7bxzf/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50-py3-none-any.whl' and adding '/tmp/tmp4w6ytsiq' to it
adding 'imdb_transform.py'
adding 'tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50.dist-info/METADATA'
adding 'tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50.dist-info/WHEEL'
adding 'tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50.dist-info/top_level.txt'
adding 'tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50.dist-info/RECORD'
removing /tmp/tmp4w6ytsiq
I0930 02:09:45.523878 17651 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I0930 02:09:45.527977 17651 rdbms_metadata_access_object.cc:686] No property is defined for the Type
Processing /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/_wheels/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50-py3-none-any.whl
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50
Processing /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/_wheels/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50-py3-none-any.whl
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:261: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:261: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
Processing /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/_wheels/tfx_user_code_Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50-py3-none-any.whl
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+074f608d1f54105225e2fee77ebe4b6159a009eca01b5a0791099840a2185d50
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType]] instead.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
2021-09-30 02:09:54.628679: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transform_graph/7/.temp_path/tftransform_tmp/ba212db7571f4a6a8548793933feba56/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transform_graph/7/.temp_path/tftransform_tmp/ba212db7571f4a6a8548793933feba56/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transform_graph/7/.temp_path/tftransform_tmp/b03b413b6a2645f2be77822ab909160a/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transform_graph/7/.temp_path/tftransform_tmp/b03b413b6a2645f2be77822ab909160a/assets

ل Transform عنصر ديه 2 أنواع المخرجات:

  • transform_graph هو الرسم البياني التي يمكن أن تؤدي عمليات تجهيزها (وسيتم إدراج هذا الرسم البياني في نماذج خدمة والتقييم).
  • transformed_examples يمثل بيانات التدريب والتقييم preprocessed.
transform.outputs
{'transform_graph': Channel(
     type_name: TransformGraph
     artifacts: [Artifact(artifact: id: 7
 type_id: 25
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transform_graph/7"
 custom_properties {
   key: "name"
   value {
     string_value: "transform_graph"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 25
 name: "TransformGraph"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'transformed_examples': Channel(
     type_name: Examples
     artifacts: [Artifact(artifact: id: 8
 type_id: 14
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transformed_examples/7"
 properties {
   key: "split_names"
   value {
     string_value: "[\"train\", \"eval\"]"
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "transformed_examples"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 14
 name: "Examples"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 properties {
   key: "version"
   value: INT
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'updated_analyzer_cache': Channel(
     type_name: TransformCache
     artifacts: [Artifact(artifact: id: 9
 type_id: 26
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/updated_analyzer_cache/7"
 custom_properties {
   key: "name"
   value {
     string_value: "updated_analyzer_cache"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 26
 name: "TransformCache"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 10
 type_id: 19
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/pre_transform_schema/7"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 19
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 11
 type_id: 17
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/pre_transform_stats/7"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 17
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 12
 type_id: 19
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/post_transform_schema/7"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 19
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 13
 type_id: 17
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/post_transform_stats/7"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 17
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_anomalies': Channel(
     type_name: ExampleAnomalies
     artifacts: [Artifact(artifact: id: 14
 type_id: 21
 uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/post_transform_anomalies/7"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_anomalies"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.2.0"
   }
 }
 state: LIVE
 , artifact_type: id: 21
 name: "ExampleAnomalies"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

نلقي نظرة خاطفة على transform_graph قطعة أثرية: فهو يشير إلى الدليل الذي يحتوي على 3 الدلائل:

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

و transform_fn يحتوي الدليل على الرسم البياني تجهيزها الفعلي. و metadata ويتضمن الدليل مخطط البيانات الأصلية. و transformed_metadata يحتوي الدليل مخطط البيانات preprocessed.

ألقِ نظرة على بعض الأمثلة التي تم تحويلها وتأكد من معالجتها بالفعل على النحو المنشود.

def pprint_examples(artifact, n_examples=3):
  print("artifact:", artifact)
  uri = os.path.join(artifact.uri, "Split-train")
  print("uri:", uri)
  tfrecord_filenames = [os.path.join(uri, name) for name in os.listdir(uri)]
  print("tfrecord_filenames:", tfrecord_filenames)
  dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")
  for tfrecord in dataset.take(n_examples):
    serialized_example = tfrecord.numpy()
    example = tf.train.Example.FromString(serialized_example)
    pp.pprint(example)
pprint_examples(transform.outputs['transformed_examples'].get()[0])
artifact: Artifact(artifact: id: 8
type_id: 14
uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transformed_examples/7"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "transformed_examples"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "Transform"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
, artifact_type: id: 14
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)
uri: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transformed_examples/7/Split-train
tfrecord_filenames: ['/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Transform/transformed_examples/7/Split-train/transformed_examples-00000-of-00001.gz']
features {
  feature {
    key: "id"
    value {
      bytes_list {
        value: "543d898a-eb8a-4572-b320-fe86737b964c"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 8
        value: 14
        value: 32
        value: 338
        value: 310
        value: 15
        value: 95
        value: 27
        value: 10001
        value: 9
        value: 31
        value: 1173
        value: 3153
        value: 43
        value: 495
        value: 10060
        value: 214
        value: 26
        value: 71
        value: 142
        value: 19
        value: 8
        value: 204
        value: 339
        value: 27
        value: 74
        value: 181
        value: 238
        value: 9
        value: 440
        value: 67
        value: 74
        value: 71
        value: 94
        value: 100
        value: 22
        value: 5442
        value: 8
        value: 1573
        value: 607
        value: 530
        value: 8
        value: 15
        value: 6
        value: 32
        value: 378
        value: 6292
        value: 207
        value: 2276
        value: 388
        value: 0
        value: 84
        value: 1023
        value: 154
        value: 65
        value: 155
        value: 52
        value: 0
        value: 10080
        value: 7871
        value: 65
        value: 250
        value: 74
        value: 3202
        value: 20
        value: 10000
        value: 3720
        value: 10020
        value: 10008
        value: 1282
        value: 3862
        value: 3
        value: 53
        value: 3952
        value: 110
        value: 1879
        value: 17
        value: 3153
        value: 14
        value: 166
        value: 19
        value: 2
        value: 1023
        value: 1007
        value: 9405
        value: 9
        value: 2
        value: 15
        value: 12
        value: 14
        value: 4504
        value: 4
        value: 109
        value: 158
        value: 1202
        value: 7
        value: 174
        value: 505
        value: 12
      }
    }
  }
}

features {
  feature {
    key: "id"
    value {
      bytes_list {
        value: "35425dab-119e-44f0-9728-a5bc63268345"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 7
        value: 23
        value: 75
        value: 494
        value: 5
        value: 748
        value: 2155
        value: 307
        value: 91
        value: 19
        value: 8
        value: 6
        value: 499
        value: 763
        value: 5
        value: 2
        value: 1690
        value: 4
        value: 200
        value: 593
        value: 57
        value: 1244
        value: 120
        value: 2364
        value: 3
        value: 4407
        value: 21
        value: 0
        value: 10081
        value: 3
        value: 263
        value: 42
        value: 6947
        value: 2
        value: 169
        value: 185
        value: 21
        value: 8
        value: 5143
        value: 7
        value: 1339
        value: 2155
        value: 81
        value: 0
        value: 18
        value: 14
        value: 1468
        value: 0
        value: 86
        value: 986
        value: 14
        value: 2259
        value: 1790
        value: 562
        value: 3
        value: 284
        value: 200
        value: 401
        value: 5
        value: 668
        value: 19
        value: 17
        value: 58
        value: 1934
        value: 4
        value: 45
        value: 14
        value: 4212
        value: 113
        value: 43
        value: 135
        value: 7
        value: 753
        value: 7
        value: 224
        value: 23
        value: 1155
        value: 179
        value: 4
        value: 0
        value: 18
        value: 19
        value: 7
        value: 191
        value: 0
        value: 2047
        value: 4
        value: 10
        value: 3
        value: 283
        value: 42
        value: 401
        value: 5
        value: 668
        value: 4
        value: 90
        value: 234
        value: 10023
        value: 227
      }
    }
  }
}

features {
  feature {
    key: "id"
    value {
      bytes_list {
        value: "2ef06538-1381-4daf-a7c1-56e71d07a47a"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 4577
        value: 7158
        value: 0
        value: 10047
        value: 3778
        value: 3346
        value: 9
        value: 2
        value: 758
        value: 1915
        value: 3
        value: 2280
        value: 1511
        value: 3
        value: 2003
        value: 10020
        value: 225
        value: 786
        value: 382
        value: 16
        value: 39
        value: 203
        value: 361
        value: 5
        value: 93
        value: 11
        value: 11
        value: 19
        value: 220
        value: 21
        value: 341
        value: 2
        value: 10000
        value: 966
        value: 0
        value: 77
        value: 4
        value: 6677
        value: 464
        value: 10071
        value: 5
        value: 10042
        value: 630
        value: 2
        value: 10044
        value: 404
        value: 2
        value: 10044
        value: 3
        value: 5
        value: 10008
        value: 0
        value: 1259
        value: 630
        value: 106
        value: 10042
        value: 6721
        value: 10
        value: 49
        value: 21
        value: 0
        value: 2071
        value: 20
        value: 1292
        value: 4
        value: 0
        value: 431
        value: 11
        value: 11
        value: 166
        value: 67
        value: 2342
        value: 5815
        value: 12
        value: 575
        value: 21
        value: 0
        value: 1691
        value: 537
        value: 4
        value: 0
        value: 3605
        value: 307
        value: 0
        value: 10054
        value: 1563
        value: 3115
        value: 467
        value: 4577
        value: 3
        value: 1069
        value: 1158
        value: 5
        value: 23
        value: 4279
        value: 6677
        value: 464
        value: 20
        value: 10004
      }
    }
  }
}

مكون GraphAugmentation

نظرًا لأن لدينا ميزات العينة والرسم البياني المركب ، يمكننا إنشاء بيانات التدريب المعززة للتعلم المهيكل العصبي. يوفر إطار عمل NSL مكتبة لدمج الرسم البياني وميزات العينة لإنتاج بيانات التدريب النهائية لتنظيم الرسم البياني. ستشمل بيانات التدريب الناتجة ميزات العينة الأصلية بالإضافة إلى ميزات جيرانهم المناظرين.

في هذا البرنامج التعليمي ، نأخذ في الاعتبار الحواف غير الموجهة ونستخدم 3 جيران كحد أقصى لكل عينة لزيادة بيانات التدريب مع جيران الرسم البياني.

def split_train_and_unsup(input_uri):
  'Separate the labeled and unlabeled instances.'

  tmp_dir = tempfile.mkdtemp(prefix='tfx-data')
  tfrecord_filenames = [
      os.path.join(input_uri, filename) for filename in os.listdir(input_uri)
  ]
  train_path = os.path.join(tmp_dir, 'train.tfrecord')
  unsup_path = os.path.join(tmp_dir, 'unsup.tfrecord')
  with tf.io.TFRecordWriter(train_path) as train_writer, \
       tf.io.TFRecordWriter(unsup_path) as unsup_writer:
    for tfrecord in tf.data.TFRecordDataset(
        tfrecord_filenames, compression_type='GZIP'):
      example = tf.train.Example()
      example.ParseFromString(tfrecord.numpy())
      if ('label_xf' not in example.features.feature or
          example.features.feature['label_xf'].int64_list.value[0] == -1):
        writer = unsup_writer
      else:
        writer = train_writer
      writer.write(tfrecord.numpy())
  return train_path, unsup_path


def gzip(filepath):
  with open(filepath, 'rb') as f_in:
    with gzip_lib.open(filepath + '.gz', 'wb') as f_out:
      shutil.copyfileobj(f_in, f_out)
  os.remove(filepath)


def copy_tfrecords(input_uri, output_uri):
  for filename in os.listdir(input_uri):
    input_filename = os.path.join(input_uri, filename)
    output_filename = os.path.join(output_uri, filename)
    shutil.copyfile(input_filename, output_filename)


@component
def GraphAugmentation(identified_examples: InputArtifact[Examples],
                      synthesized_graph: InputArtifact[SynthesizedGraph],
                      augmented_examples: OutputArtifact[Examples],
                      num_neighbors: Parameter[int],
                      component_name: Parameter[str]) -> None:

  # Get a list of the splits in input_data
  splits_list = artifact_utils.decode_split_names(
      split_names=identified_examples.split_names)

  train_input_uri = os.path.join(identified_examples.uri, 'Split-train')
  eval_input_uri = os.path.join(identified_examples.uri, 'Split-eval')
  train_graph_uri = os.path.join(synthesized_graph.uri, 'Split-train')
  train_output_uri = os.path.join(augmented_examples.uri, 'Split-train')
  eval_output_uri = os.path.join(augmented_examples.uri, 'Split-eval')

  os.mkdir(train_output_uri)
  os.mkdir(eval_output_uri)

  # Separate the labeled and unlabeled examples from the 'Split-train' split.
  train_path, unsup_path = split_train_and_unsup(train_input_uri)

  output_path = os.path.join(train_output_uri, 'nsl_train_data.tfr')
  pack_nbrs_args = dict(
      labeled_examples_path=train_path,
      unlabeled_examples_path=unsup_path,
      graph_path=os.path.join(train_graph_uri, 'graph.tsv'),
      output_training_data_path=output_path,
      add_undirected_edges=True,
      max_nbrs=num_neighbors)
  print('nsl.tools.pack_nbrs arguments:', pack_nbrs_args)
  nsl.tools.pack_nbrs(**pack_nbrs_args)

  # Downstream components expect gzip'ed TFRecords.
  gzip(output_path)

  # The test examples are left untouched and are simply copied over.
  copy_tfrecords(eval_input_uri, eval_output_uri)

  augmented_examples.split_names = identified_examples.split_names

  return
# Augments training data with graph neighbors.
graph_augmentation = GraphAugmentation(
    identified_examples=transform.outputs['transformed_examples'],
    synthesized_graph=synthesize_graph.outputs['synthesized_graph'],
    component_name=u'GraphAugmentation',
    num_neighbors=3)
context.run(graph_augmentation, enable_cache=False)
nsl.tools.pack_nbrs arguments: {'labeled_examples_path': '/tmp/tfx-datazbyjzbyq/train.tfrecord', 'unlabeled_examples_path': '/tmp/tfx-datazbyjzbyq/unsup.tfrecord', 'graph_path': '/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/SynthesizeGraph/synthesized_graph/6/Split-train/graph.tsv', 'output_training_data_path': '/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/GraphAugmentation/augmented_examples/8/Split-train/nsl_train_data.tfr', 'add_undirected_edges': True, 'max_nbrs': 3}
pprint_examples(graph_augmentation.outputs['augmented_examples'].get()[0], 6)
artifact: Artifact(artifact: id: 15
type_id: 14
uri: "/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/GraphAugmentation/augmented_examples/8"
properties {
  key: "split_names"
  value {
    string_value: "[\"train\", \"eval\"]"
  }
}
custom_properties {
  key: "name"
  value {
    string_value: "augmented_examples"
  }
}
custom_properties {
  key: "producer_component"
  value {
    string_value: "GraphAugmentation"
  }
}
custom_properties {
  key: "state"
  value {
    string_value: "published"
  }
}
custom_properties {
  key: "tfx_version"
  value {
    string_value: "1.2.0"
  }
}
state: LIVE
, artifact_type: id: 14
name: "Examples"
properties {
  key: "span"
  value: INT
}
properties {
  key: "split_names"
  value: STRING
}
properties {
  key: "version"
  value: INT
}
)
uri: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/GraphAugmentation/augmented_examples/8/Split-train
tfrecord_filenames: ['/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/GraphAugmentation/augmented_examples/8/Split-train/nsl_train_data.tfr.gz']
features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "543d898a-eb8a-4572-b320-fe86737b964c"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 8
        value: 14
        value: 32
        value: 338
        value: 310
        value: 15
        value: 95
        value: 27
        value: 10001
        value: 9
        value: 31
        value: 1173
        value: 3153
        value: 43
        value: 495
        value: 10060
        value: 214
        value: 26
        value: 71
        value: 142
        value: 19
        value: 8
        value: 204
        value: 339
        value: 27
        value: 74
        value: 181
        value: 238
        value: 9
        value: 440
        value: 67
        value: 74
        value: 71
        value: 94
        value: 100
        value: 22
        value: 5442
        value: 8
        value: 1573
        value: 607
        value: 530
        value: 8
        value: 15
        value: 6
        value: 32
        value: 378
        value: 6292
        value: 207
        value: 2276
        value: 388
        value: 0
        value: 84
        value: 1023
        value: 154
        value: 65
        value: 155
        value: 52
        value: 0
        value: 10080
        value: 7871
        value: 65
        value: 250
        value: 74
        value: 3202
        value: 20
        value: 10000
        value: 3720
        value: 10020
        value: 10008
        value: 1282
        value: 3862
        value: 3
        value: 53
        value: 3952
        value: 110
        value: 1879
        value: 17
        value: 3153
        value: 14
        value: 166
        value: 19
        value: 2
        value: 1023
        value: 1007
        value: 9405
        value: 9
        value: 2
        value: 15
        value: 12
        value: 14
        value: 4504
        value: 4
        value: 109
        value: 158
        value: 1202
        value: 7
        value: 174
        value: 505
        value: 12
      }
    }
  }
}

features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "35425dab-119e-44f0-9728-a5bc63268345"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 7
        value: 23
        value: 75
        value: 494
        value: 5
        value: 748
        value: 2155
        value: 307
        value: 91
        value: 19
        value: 8
        value: 6
        value: 499
        value: 763
        value: 5
        value: 2
        value: 1690
        value: 4
        value: 200
        value: 593
        value: 57
        value: 1244
        value: 120
        value: 2364
        value: 3
        value: 4407
        value: 21
        value: 0
        value: 10081
        value: 3
        value: 263
        value: 42
        value: 6947
        value: 2
        value: 169
        value: 185
        value: 21
        value: 8
        value: 5143
        value: 7
        value: 1339
        value: 2155
        value: 81
        value: 0
        value: 18
        value: 14
        value: 1468
        value: 0
        value: 86
        value: 986
        value: 14
        value: 2259
        value: 1790
        value: 562
        value: 3
        value: 284
        value: 200
        value: 401
        value: 5
        value: 668
        value: 19
        value: 17
        value: 58
        value: 1934
        value: 4
        value: 45
        value: 14
        value: 4212
        value: 113
        value: 43
        value: 135
        value: 7
        value: 753
        value: 7
        value: 224
        value: 23
        value: 1155
        value: 179
        value: 4
        value: 0
        value: 18
        value: 19
        value: 7
        value: 191
        value: 0
        value: 2047
        value: 4
        value: 10
        value: 3
        value: 283
        value: 42
        value: 401
        value: 5
        value: 668
        value: 4
        value: 90
        value: 234
        value: 10023
        value: 227
      }
    }
  }
}

features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "2ef06538-1381-4daf-a7c1-56e71d07a47a"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 4577
        value: 7158
        value: 0
        value: 10047
        value: 3778
        value: 3346
        value: 9
        value: 2
        value: 758
        value: 1915
        value: 3
        value: 2280
        value: 1511
        value: 3
        value: 2003
        value: 10020
        value: 225
        value: 786
        value: 382
        value: 16
        value: 39
        value: 203
        value: 361
        value: 5
        value: 93
        value: 11
        value: 11
        value: 19
        value: 220
        value: 21
        value: 341
        value: 2
        value: 10000
        value: 966
        value: 0
        value: 77
        value: 4
        value: 6677
        value: 464
        value: 10071
        value: 5
        value: 10042
        value: 630
        value: 2
        value: 10044
        value: 404
        value: 2
        value: 10044
        value: 3
        value: 5
        value: 10008
        value: 0
        value: 1259
        value: 630
        value: 106
        value: 10042
        value: 6721
        value: 10
        value: 49
        value: 21
        value: 0
        value: 2071
        value: 20
        value: 1292
        value: 4
        value: 0
        value: 431
        value: 11
        value: 11
        value: 166
        value: 67
        value: 2342
        value: 5815
        value: 12
        value: 575
        value: 21
        value: 0
        value: 1691
        value: 537
        value: 4
        value: 0
        value: 3605
        value: 307
        value: 0
        value: 10054
        value: 1563
        value: 3115
        value: 467
        value: 4577
        value: 3
        value: 1069
        value: 1158
        value: 5
        value: 23
        value: 4279
        value: 6677
        value: 464
        value: 20
        value: 10004
      }
    }
  }
}

features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "c86ebc43-4260-4044-84ad-e3ab0e865666"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 8
        value: 6
        value: 0
        value: 251
        value: 4
        value: 18
        value: 20
        value: 2
        value: 6783
        value: 2295
        value: 2338
        value: 52
        value: 0
        value: 468
        value: 4
        value: 0
        value: 189
        value: 73
        value: 153
        value: 1294
        value: 17
        value: 90
        value: 234
        value: 935
        value: 16
        value: 25
        value: 10024
        value: 92
        value: 2
        value: 192
        value: 4218
        value: 3317
        value: 3
        value: 10098
        value: 20
        value: 2
        value: 356
        value: 4
        value: 565
        value: 334
        value: 382
        value: 36
        value: 6989
        value: 3
        value: 6065
        value: 2510
        value: 16
        value: 203
        value: 7264
        value: 2849
        value: 0
        value: 86
        value: 346
        value: 50
        value: 26
        value: 58
        value: 10020
        value: 5
        value: 1464
        value: 58
        value: 2081
        value: 2969
        value: 42
        value: 2
        value: 2364
        value: 3
        value: 1402
        value: 10062
        value: 138
        value: 147
        value: 614
        value: 115
        value: 29
        value: 90
        value: 105
        value: 2
        value: 223
        value: 18
        value: 9
        value: 160
        value: 324
        value: 3
        value: 24
        value: 12
        value: 1252
        value: 0
        value: 2142
        value: 10
        value: 1832
        value: 111
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
      }
    }
  }
}

features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "1b8afe16-0cd4-4164-8be5-11209dc5c975"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 16
        value: 423
        value: 23
        value: 1367
        value: 30
        value: 0
        value: 363
        value: 12
        value: 153
        value: 3174
        value: 9
        value: 8
        value: 18
        value: 26
        value: 667
        value: 338
        value: 1372
        value: 0
        value: 86
        value: 46
        value: 9200
        value: 282
        value: 0
        value: 10091
        value: 4
        value: 0
        value: 694
        value: 10028
        value: 52
        value: 362
        value: 26
        value: 202
        value: 39
        value: 216
        value: 5
        value: 27
        value: 5822
        value: 19
        value: 52
        value: 58
        value: 362
        value: 26
        value: 202
        value: 39
        value: 474
        value: 0
        value: 10029
        value: 4
        value: 2
        value: 243
        value: 143
        value: 386
        value: 3
        value: 0
        value: 386
        value: 579
        value: 2
        value: 132
        value: 57
        value: 725
        value: 88
        value: 140
        value: 30
        value: 27
        value: 33
        value: 1359
        value: 29
        value: 8
        value: 567
        value: 35
        value: 106
        value: 230
        value: 60
        value: 0
        value: 3041
        value: 5
        value: 7879
        value: 28
        value: 281
        value: 110
        value: 111
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
        value: 1
      }
    }
  }
}

features {
  feature {
    key: "NL_num_nbrs"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "id"
    value {
      bytes_list {
        value: "6e089f0e-6f62-492c-92e4-3a8a05f34c7f"
      }
    }
  }
  feature {
    key: "label_xf"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "text_xf"
    value {
      int64_list {
        value: 13
        value: 8
        value: 6
        value: 2
        value: 18
        value: 69
        value: 140
        value: 27
        value: 83
        value: 31
        value: 1877
        value: 905
        value: 9
        value: 10057
        value: 31
        value: 43
        value: 2115
        value: 36
        value: 32
        value: 2057
        value: 6133
        value: 10
        value: 6
        value: 32
        value: 2474
        value: 1614
        value: 3
        value: 2707
        value: 990
        value: 4
        value: 10067
        value: 9
        value: 2
        value: 1532
        value: 242
        value: 90
        value: 3757
        value: 3
        value: 90
        value: 10026
        value: 0
        value: 242
        value: 6
        value: 260
        value: 31
        value: 24
        value: 4
        value: 0
        value: 84
        value: 497
        value: 177
        value: 1151
        value: 777
        value: 9
        value: 397
        value: 552
        value: 7726
        value: 10051
        value: 34
        value: 14
        value: 379
        value: 33
        value: 1829
        value: 9
        value: 123
        value: 0
        value: 916
        value: 10028
        value: 7
        value: 64
        value: 571
        value: 12
        value: 8
        value: 18
        value: 27
        value: 687
        value: 9
        value: 30
        value: 5609
        value: 16
        value: 25
        value: 99
        value: 117
        value: 66
        value: 2
        value: 130
        value: 21
        value: 8
        value: 842
        value: 7726
        value: 10051
        value: 6
        value: 338
        value: 1107
        value: 3
        value: 24
        value: 10020
        value: 29
        value: 53
        value: 1476
      }
    }
  }
}

مكون المدرب

و Trainer القطارات المكونة النماذج باستخدام TensorFlow.

إنشاء وحدة نمطية بيثون تحتوي على trainer_fn وظيفة، والتي لا بد من العودة مقدر. إذا كنت تفضل إنشاء نموذج Keras، يمكنك القيام بذلك ومن ثم تحويله إلى مقدر باستخدام keras.model_to_estimator() .

# Setup paths.
_trainer_module_file = 'imdb_trainer.py'
%%writefile {_trainer_module_file}

import neural_structured_learning as nsl

import tensorflow as tf

import tensorflow_model_analysis as tfma
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils


NBR_FEATURE_PREFIX = 'NL_nbr_'
NBR_WEIGHT_SUFFIX = '_weight'
LABEL_KEY = 'label'
ID_FEATURE_KEY = 'id'

def _transformed_name(key):
  return key + '_xf'


def _transformed_names(keys):
  return [_transformed_name(key) for key in keys]


# Hyperparameters:
#
# We will use an instance of `HParams` to inclue various hyperparameters and
# constants used for training and evaluation. We briefly describe each of them
# below:
#
# -   max_seq_length: This is the maximum number of words considered from each
#                     movie review in this example.
# -   vocab_size: This is the size of the vocabulary considered for this
#                 example.
# -   oov_size: This is the out-of-vocabulary size considered for this example.
# -   distance_type: This is the distance metric used to regularize the sample
#                    with its neighbors.
# -   graph_regularization_multiplier: This controls the relative weight of the
#                                      graph regularization term in the overall
#                                      loss function.
# -   num_neighbors: The number of neighbors used for graph regularization. This
#                    value has to be less than or equal to the `num_neighbors`
#                    argument used above in the GraphAugmentation component when
#                    invoking `nsl.tools.pack_nbrs`.
# -   num_fc_units: The number of units in the fully connected layer of the
#                   neural network.
class HParams(object):
  """Hyperparameters used for training."""
  def __init__(self):
    ### dataset parameters
    # The following 3 values should match those defined in the Transform
    # Component.
    self.max_seq_length = 100
    self.vocab_size = 10000
    self.oov_size = 100
    ### Neural Graph Learning parameters
    self.distance_type = nsl.configs.DistanceType.L2
    self.graph_regularization_multiplier = 0.1
    # The following value has to be at most the value of 'num_neighbors' used
    # in the GraphAugmentation component.
    self.num_neighbors = 1
    ### Model Architecture
    self.num_embedding_dims = 16
    self.num_fc_units = 64

HPARAMS = HParams()


def optimizer_fn():
  """Returns an instance of `tf.Optimizer`."""
  return tf.compat.v1.train.RMSPropOptimizer(
    learning_rate=0.0001, decay=1e-6)


def build_train_op(loss, global_step):
  """Builds a train op to optimize the given loss using gradient descent."""
  with tf.name_scope('train'):
    optimizer = optimizer_fn()
    train_op = optimizer.minimize(loss=loss, global_step=global_step)
  return train_op


# Building the model:
#
# A neural network is created by stacking layers—this requires two main
# architectural decisions:
# * How many layers to use in the model?
# * How many *hidden units* to use for each layer?
#
# In this example, the input data consists of an array of word-indices. The
# labels to predict are either 0 or 1. We will use a feed-forward neural network
# as our base model in this tutorial.
def feed_forward_model(features, is_training, reuse=tf.compat.v1.AUTO_REUSE):
  """Builds a simple 2 layer feed forward neural network.

  The layers are effectively stacked sequentially to build the classifier. The
  first layer is an Embedding layer, which takes the integer-encoded vocabulary
  and looks up the embedding vector for each word-index. These vectors are
  learned as the model trains. The vectors add a dimension to the output array.
  The resulting dimensions are: (batch, sequence, embedding). Next is a global
  average pooling 1D layer, which reduces the dimensionality of its inputs from
  3D to 2D. This fixed-length output vector is piped through a fully-connected
  (Dense) layer with 16 hidden units. The last layer is densely connected with a
  single output node. Using the sigmoid activation function, this value is a
  float between 0 and 1, representing a probability, or confidence level.

  Args:
    features: A dictionary containing batch features returned from the
      `input_fn`, that include sample features, corresponding neighbor features,
      and neighbor weights.
    is_training: a Python Boolean value or a Boolean scalar Tensor, indicating
      whether to apply dropout.
    reuse: a Python Boolean value for reusing variable scope.

  Returns:
    logits: Tensor of shape [batch_size, 1].
    representations: Tensor of shape [batch_size, _] for graph regularization.
      This is the representation of each example at the graph regularization
      layer.
  """

  with tf.compat.v1.variable_scope('ff', reuse=reuse):
    inputs = features[_transformed_name('text')]
    embeddings = tf.compat.v1.get_variable(
        'embeddings',
        shape=[
            HPARAMS.vocab_size + HPARAMS.oov_size, HPARAMS.num_embedding_dims
        ])
    embedding_layer = tf.nn.embedding_lookup(embeddings, inputs)

    pooling_layer = tf.compat.v1.layers.AveragePooling1D(
        pool_size=HPARAMS.max_seq_length, strides=HPARAMS.max_seq_length)(
            embedding_layer)
    # Shape of pooling_layer is now [batch_size, 1, HPARAMS.num_embedding_dims]
    pooling_layer = tf.reshape(pooling_layer, [-1, HPARAMS.num_embedding_dims])

    dense_layer = tf.compat.v1.layers.Dense(
        16, activation='relu')(
            pooling_layer)

    output_layer = tf.compat.v1.layers.Dense(
        1, activation='sigmoid')(
            dense_layer)

    # Graph regularization will be done on the penultimate (dense) layer
    # because the output layer is a single floating point number.
    return output_layer, dense_layer


# A note on hidden units:
#
# The above model has two intermediate or "hidden" layers, between the input and
# output, and excluding the Embedding layer. The number of outputs (units,
# nodes, or neurons) is the dimension of the representational space for the
# layer. In other words, the amount of freedom the network is allowed when
# learning an internal representation. If a model has more hidden units
# (a higher-dimensional representation space), and/or more layers, then the
# network can learn more complex representations. However, it makes the network
# more computationally expensive and may lead to learning unwanted
# patterns—patterns that improve performance on training data but not on the
# test data. This is called overfitting.


# This function will be used to generate the embeddings for samples and their
# corresponding neighbors, which will then be used for graph regularization.
def embedding_fn(features, mode):
  """Returns the embedding corresponding to the given features.

  Args:
    features: A dictionary containing batch features returned from the
      `input_fn`, that include sample features, corresponding neighbor features,
      and neighbor weights.
    mode: Specifies if this is training, evaluation, or prediction. See
      tf.estimator.ModeKeys.

  Returns:
    The embedding that will be used for graph regularization.
  """
  is_training = (mode == tf.estimator.ModeKeys.TRAIN)
  _, embedding = feed_forward_model(features, is_training)
  return embedding


def feed_forward_model_fn(features, labels, mode, params, config):
  """Implementation of the model_fn for the base feed-forward model.

  Args:
    features: This is the first item returned from the `input_fn` passed to
      `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
      `dict` of same.
    labels: This is the second item returned from the `input_fn` passed to
      `train`, `evaluate`, and `predict`. This should be a single `Tensor` or
      `dict` of same (for multi-head models). If mode is `ModeKeys.PREDICT`,
      `labels=None` will be passed. If the `model_fn`'s signature does not
      accept `mode`, the `model_fn` must still be able to handle `labels=None`.
    mode: Optional. Specifies if this training, evaluation or prediction. See
      `ModeKeys`.
    params: An HParams instance as returned by get_hyper_parameters().
    config: Optional configuration object. Will receive what is passed to
      Estimator in `config` parameter, or the default `config`. Allows updating
      things in your model_fn based on configuration such as `num_ps_replicas`,
      or `model_dir`. Unused currently.

  Returns:
     A `tf.estimator.EstimatorSpec` for the base feed-forward model. This does
     not include graph-based regularization.
  """

  is_training = mode == tf.estimator.ModeKeys.TRAIN

  # Build the computation graph.
  probabilities, _ = feed_forward_model(features, is_training)
  predictions = tf.round(probabilities)

  if mode == tf.estimator.ModeKeys.PREDICT:
    # labels will be None, and no loss to compute.
    cross_entropy_loss = None
    eval_metric_ops = None
  else:
    # Loss is required in train and eval modes.
    # Flatten 'probabilities' to 1-D.
    probabilities = tf.reshape(probabilities, shape=[-1])
    cross_entropy_loss = tf.compat.v1.keras.losses.binary_crossentropy(
        labels, probabilities)
    eval_metric_ops = {
        'accuracy': tf.compat.v1.metrics.accuracy(labels, predictions)
    }

  if is_training:
    global_step = tf.compat.v1.train.get_or_create_global_step()
    train_op = build_train_op(cross_entropy_loss, global_step)
  else:
    train_op = None

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions={
          'probabilities': probabilities,
          'predictions': predictions
      },
      loss=cross_entropy_loss,
      train_op=train_op,
      eval_metric_ops=eval_metric_ops)


# Tf.Transform considers these features as "raw"
def _get_raw_feature_spec(schema):
  return schema_utils.schema_as_feature_spec(schema).feature_spec


def _gzip_reader_fn(filenames):
  """Small utility returning a record reader that can read gzip'ed files."""
  return tf.data.TFRecordDataset(
      filenames,
      compression_type='GZIP')


def _example_serving_receiver_fn(tf_transform_output, schema):
  """Build the serving in inputs.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(LABEL_KEY)

  # We don't need the ID feature for serving.
  raw_feature_spec.pop(ID_FEATURE_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  # Even though, LABEL_KEY was removed from 'raw_feature_spec', the transform
  # operation would have injected the transformed LABEL_KEY feature with a
  # default value.
  transformed_features.pop(_transformed_name(LABEL_KEY))
  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors)


def _eval_input_receiver_fn(tf_transform_output, schema):
  """Build everything needed for the tf-model-analysis to run the model.

  Args:
    tf_transform_output: A TFTransformOutput.
    schema: the schema of the input data.

  Returns:
    EvalInputReceiver function, which contains:

      - Tensorflow graph which parses raw untransformed features, applies the
        tf-transform preprocessing operators.
      - Set of raw, untransformed features.
      - Label against which predictions will be compared.
  """
  # Notice that the inputs are raw features, not transformed features here.
  raw_feature_spec = _get_raw_feature_spec(schema)

  # We don't need the ID feature for TFMA.
  raw_feature_spec.pop(ID_FEATURE_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_output.transform_raw_features(
      serving_input_receiver.features)

  labels = transformed_features.pop(_transformed_name(LABEL_KEY))
  return tfma.export.EvalInputReceiver(
      features=transformed_features,
      receiver_tensors=serving_input_receiver.receiver_tensors,
      labels=labels)


def _augment_feature_spec(feature_spec, num_neighbors):
  """Augments `feature_spec` to include neighbor features.
    Args:
      feature_spec: Dictionary of feature keys mapping to TF feature types.
      num_neighbors: Number of neighbors to use for feature key augmentation.
    Returns:
      An augmented `feature_spec` that includes neighbor feature keys.
  """
  for i in range(num_neighbors):
    feature_spec['{}{}_{}'.format(NBR_FEATURE_PREFIX, i, 'id')] = \
        tf.io.VarLenFeature(dtype=tf.string)
    # We don't care about the neighbor features corresponding to
    # _transformed_name(LABEL_KEY) because the LABEL_KEY feature will be
    # removed from the feature spec during training/evaluation.
    feature_spec['{}{}_{}'.format(NBR_FEATURE_PREFIX, i, 'text_xf')] = \
        tf.io.FixedLenFeature(shape=[HPARAMS.max_seq_length], dtype=tf.int64,
                              default_value=tf.constant(0, dtype=tf.int64,
                                                        shape=[HPARAMS.max_seq_length]))
    # The 'NL_num_nbrs' features is currently not used.

  # Set the neighbor weight feature keys.
  for i in range(num_neighbors):
    feature_spec['{}{}{}'.format(NBR_FEATURE_PREFIX, i, NBR_WEIGHT_SUFFIX)] = \
        tf.io.FixedLenFeature(shape=[1], dtype=tf.float32, default_value=[0.0])

  return feature_spec


def _input_fn(filenames, tf_transform_output, is_training, batch_size=200):
  """Generates features and labels for training or evaluation.

  Args:
    filenames: [str] list of CSV files to read data from.
    tf_transform_output: A TFTransformOutput.
    is_training: Boolean indicating if we are in training mode.
    batch_size: int First dimension size of the Tensors returned by input_fn

  Returns:
    A (features, indices) tuple where features is a dictionary of
      Tensors, and indices is a single Tensor of label indices.
  """
  transformed_feature_spec = (
      tf_transform_output.transformed_feature_spec().copy())

  # During training, NSL uses augmented training data (which includes features
  # from graph neighbors). So, update the feature spec accordingly. This needs
  # to be done because we are using different schemas for NSL training and eval,
  # but the Trainer Component only accepts a single schema.
  if is_training:
    transformed_feature_spec =_augment_feature_spec(transformed_feature_spec,
                                                    HPARAMS.num_neighbors)

  dataset = tf.data.experimental.make_batched_features_dataset(
      filenames, batch_size, transformed_feature_spec, reader=_gzip_reader_fn)

  transformed_features = tf.compat.v1.data.make_one_shot_iterator(
      dataset).get_next()
  # We pop the label because we do not want to use it as a feature while we're
  # training.
  return transformed_features, transformed_features.pop(
      _transformed_name(LABEL_KEY))


# TFX will call this function
def trainer_fn(hparams, schema):
  """Build the estimator using the high level API.
  Args:
    hparams: Holds hyperparameters used to train the model as name/value pairs.
    schema: Holds the schema of the training examples.
  Returns:
    A dict of the following:

      - estimator: The estimator that will be used for training and eval.
      - train_spec: Spec for training.
      - eval_spec: Spec for eval.
      - eval_input_receiver_fn: Input function for eval.
  """
  train_batch_size = 40
  eval_batch_size = 40

  tf_transform_output = tft.TFTransformOutput(hparams.transform_output)

  train_input_fn = lambda: _input_fn(
      hparams.train_files,
      tf_transform_output,
      is_training=True,
      batch_size=train_batch_size)

  eval_input_fn = lambda: _input_fn(
      hparams.eval_files,
      tf_transform_output,
      is_training=False,
      batch_size=eval_batch_size)

  train_spec = tf.estimator.TrainSpec(
      train_input_fn,
      max_steps=hparams.train_steps)

  serving_receiver_fn = lambda: _example_serving_receiver_fn(
      tf_transform_output, schema)

  exporter = tf.estimator.FinalExporter('imdb', serving_receiver_fn)
  eval_spec = tf.estimator.EvalSpec(
      eval_input_fn,
      steps=hparams.eval_steps,
      exporters=[exporter],
      name='imdb-eval')

  run_config = tf.estimator.RunConfig(
      save_checkpoints_steps=999, keep_checkpoint_max=1)

  run_config = run_config.replace(model_dir=hparams.serving_model_dir)

  estimator = tf.estimator.Estimator(
      model_fn=feed_forward_model_fn, config=run_config, params=HPARAMS)

  # Create a graph regularization config.
  graph_reg_config = nsl.configs.make_graph_reg_config(
      max_neighbors=HPARAMS.num_neighbors,
      multiplier=HPARAMS.graph_regularization_multiplier,
      distance_type=HPARAMS.distance_type,
      sum_over_axis=-1)

  # Invoke the Graph Regularization Estimator wrapper to incorporate
  # graph-based regularization for training.
  graph_nsl_estimator = nsl.estimator.add_graph_regularization(
      estimator,
      embedding_fn,
      optimizer_fn=optimizer_fn,
      graph_reg_config=graph_reg_config)

  # Create an input receiver for TFMA processing
  receiver_fn = lambda: _eval_input_receiver_fn(
      tf_transform_output, schema)

  return {
      'estimator': graph_nsl_estimator,
      'train_spec': train_spec,
      'eval_spec': eval_spec,
      'eval_input_receiver_fn': receiver_fn
  }
Writing imdb_trainer.py

إنشاء وتشغيل Trainer عنصر، ويمر ذلك الملف الذي خلقنا أعلاه.

# Uses user-provided Python function that implements a model using TensorFlow's
# Estimators API.
trainer = Trainer(
    module_file=_trainer_module_file,
    custom_executor_spec=executor_spec.ExecutorClassSpec(
        trainer_executor.Executor),
    transformed_examples=graph_augmentation.outputs['augmented_examples'],
    schema=schema_gen.outputs['schema'],
    transform_graph=transform.outputs['transform_graph'],
    train_args=trainer_pb2.TrainArgs(num_steps=10000),
    eval_args=trainer_pb2.EvalArgs(num_steps=5000))
context.run(trainer)
WARNING:absl:`custom_executor_spec` is deprecated. Please customize component directly.
WARNING:absl:`transformed_examples` is deprecated. Please use `examples` instead.
I0930 02:10:21.988307 17651 rdbms_metadata_access_object.cc:686] No property is defined for the Type
I0930 02:10:21.991762 17651 rdbms_metadata_access_object.cc:686] No property is defined for the Type
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying imdb_trainer.py -> build/lib
copying imdb_transform.py -> build/lib
installing to /tmp/tmpaao79w74
running install
running install_lib
copying build/lib/imdb_trainer.py -> /tmp/tmpaao79w74
copying build/lib/imdb_transform.py -> /tmp/tmpaao79w74
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmpaao79w74/tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d-py3.7.egg-info
running install_scripts
creating /tmp/tmpaao79w74/tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d.dist-info/WHEEL
creating '/tmp/tmp4hwyxki5/tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d-py3-none-any.whl' and adding '/tmp/tmpaao79w74' to it
adding 'imdb_trainer.py'
adding 'imdb_transform.py'
adding 'tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d.dist-info/RECORD'
removing /tmp/tmpaao79w74
Processing /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/_wheels/tfx_user_code_Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d-py3-none-any.whl
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+b990a2c6a4f23081880867efa3bd3c38db9d7bd0a87a0c9b277ae63714defc8d
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 999, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 1, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 999, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 1, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 999 or save_checkpoints_secs None.
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 999 or save_checkpoints_secs None.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/rmsprop.py:123: calling Ones.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/rmsprop.py:123: calling Ones.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:5049: calling gather (from tensorflow.python.ops.array_ops) with validate_indices is deprecated and will be removed in a future version.
Instructions for updating:
The `validate_indices` argument has no effect. Indices are always validated on CPU and never validated on GPU.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:5049: calling gather (from tensorflow.python.ops.array_ops) with validate_indices is deprecated and will be removed in a future version.
Instructions for updating:
The `validate_indices` argument has no effect. Indices are always validated on CPU and never validated on GPU.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.69296396, step = 0
INFO:tensorflow:loss = 0.69296396, step = 0
INFO:tensorflow:global_step/sec: 234.78
INFO:tensorflow:global_step/sec: 234.78
INFO:tensorflow:loss = 0.69264483, step = 100 (0.427 sec)
INFO:tensorflow:loss = 0.69264483, step = 100 (0.427 sec)
INFO:tensorflow:global_step/sec: 318.105
INFO:tensorflow:global_step/sec: 318.105
INFO:tensorflow:loss = 0.6925505, step = 200 (0.314 sec)
INFO:tensorflow:loss = 0.6925505, step = 200 (0.314 sec)
INFO:tensorflow:global_step/sec: 320.269
INFO:tensorflow:global_step/sec: 320.269
INFO:tensorflow:loss = 0.6904493, step = 300 (0.312 sec)
INFO:tensorflow:loss = 0.6904493, step = 300 (0.312 sec)
INFO:tensorflow:global_step/sec: 320.89
INFO:tensorflow:global_step/sec: 320.89
INFO:tensorflow:loss = 0.6916306, step = 400 (0.311 sec)
INFO:tensorflow:loss = 0.6916306, step = 400 (0.311 sec)
INFO:tensorflow:global_step/sec: 317.027
INFO:tensorflow:global_step/sec: 317.027
INFO:tensorflow:loss = 0.69061863, step = 500 (0.316 sec)
INFO:tensorflow:loss = 0.69061863, step = 500 (0.316 sec)
INFO:tensorflow:global_step/sec: 318.455
INFO:tensorflow:global_step/sec: 318.455
INFO:tensorflow:loss = 0.68934745, step = 600 (0.314 sec)
INFO:tensorflow:loss = 0.68934745, step = 600 (0.314 sec)
INFO:tensorflow:global_step/sec: 314.217
INFO:tensorflow:global_step/sec: 314.217
INFO:tensorflow:loss = 0.6880224, step = 700 (0.319 sec)
INFO:tensorflow:loss = 0.6880224, step = 700 (0.319 sec)
INFO:tensorflow:global_step/sec: 315.151
INFO:tensorflow:global_step/sec: 315.151
INFO:tensorflow:loss = 0.68590856, step = 800 (0.317 sec)
INFO:tensorflow:loss = 0.68590856, step = 800 (0.317 sec)
INFO:tensorflow:global_step/sec: 309.868
INFO:tensorflow:global_step/sec: 309.868
INFO:tensorflow:loss = 0.6840659, step = 900 (0.323 sec)
INFO:tensorflow:loss = 0.6840659, step = 900 (0.323 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 999...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 999...
INFO:tensorflow:Saving checkpoints for 999 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 999 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/saver.py:971: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/training/saver.py:971: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 999...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 999...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-30T02:10:31
INFO:tensorflow:Starting evaluation at 2021-09-30T02:10:31
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-999
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-999
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 5.01992s
INFO:tensorflow:Inference Time : 5.01992s
INFO:tensorflow:Finished evaluation at 2021-09-30-02:10:36
INFO:tensorflow:Finished evaluation at 2021-09-30-02:10:36
INFO:tensorflow:Saving dict for global step 999: accuracy = 0.6985, global_step = 999, loss = 0.6864252
INFO:tensorflow:Saving dict for global step 999: accuracy = 0.6985, global_step = 999, loss = 0.6864252
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 999: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-999
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 999: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-999
INFO:tensorflow:global_step/sec: 17.9296
INFO:tensorflow:global_step/sec: 17.9296
INFO:tensorflow:loss = 0.6870457, step = 1000 (5.577 sec)
INFO:tensorflow:loss = 0.6870457, step = 1000 (5.577 sec)
INFO:tensorflow:global_step/sec: 311.744
INFO:tensorflow:global_step/sec: 311.744
INFO:tensorflow:loss = 0.683711, step = 1100 (0.321 sec)
INFO:tensorflow:loss = 0.683711, step = 1100 (0.321 sec)
INFO:tensorflow:global_step/sec: 311.005
INFO:tensorflow:global_step/sec: 311.005
INFO:tensorflow:loss = 0.68033475, step = 1200 (0.321 sec)
INFO:tensorflow:loss = 0.68033475, step = 1200 (0.321 sec)
INFO:tensorflow:global_step/sec: 310.187
INFO:tensorflow:global_step/sec: 310.187
INFO:tensorflow:loss = 0.68130076, step = 1300 (0.323 sec)
INFO:tensorflow:loss = 0.68130076, step = 1300 (0.323 sec)
INFO:tensorflow:global_step/sec: 318.043
INFO:tensorflow:global_step/sec: 318.043
INFO:tensorflow:loss = 0.68510944, step = 1400 (0.314 sec)
INFO:tensorflow:loss = 0.68510944, step = 1400 (0.314 sec)
INFO:tensorflow:global_step/sec: 318.48
INFO:tensorflow:global_step/sec: 318.48
INFO:tensorflow:loss = 0.6783714, step = 1500 (0.314 sec)
INFO:tensorflow:loss = 0.6783714, step = 1500 (0.314 sec)
INFO:tensorflow:global_step/sec: 318.227
INFO:tensorflow:global_step/sec: 318.227
INFO:tensorflow:loss = 0.68186384, step = 1600 (0.315 sec)
INFO:tensorflow:loss = 0.68186384, step = 1600 (0.315 sec)
INFO:tensorflow:global_step/sec: 320.264
INFO:tensorflow:global_step/sec: 320.264
INFO:tensorflow:loss = 0.6734793, step = 1700 (0.312 sec)
INFO:tensorflow:loss = 0.6734793, step = 1700 (0.312 sec)
INFO:tensorflow:global_step/sec: 319.942
INFO:tensorflow:global_step/sec: 319.942
INFO:tensorflow:loss = 0.66850907, step = 1800 (0.313 sec)
INFO:tensorflow:loss = 0.66850907, step = 1800 (0.313 sec)
INFO:tensorflow:global_step/sec: 317.849
INFO:tensorflow:global_step/sec: 317.849
INFO:tensorflow:loss = 0.66818386, step = 1900 (0.315 sec)
INFO:tensorflow:loss = 0.66818386, step = 1900 (0.315 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1998...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1998...
INFO:tensorflow:Saving checkpoints for 1998 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 1998 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1998...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1998...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 269.966
INFO:tensorflow:global_step/sec: 269.966
INFO:tensorflow:loss = 0.65796363, step = 2000 (0.370 sec)
INFO:tensorflow:loss = 0.65796363, step = 2000 (0.370 sec)
INFO:tensorflow:global_step/sec: 319.352
INFO:tensorflow:global_step/sec: 319.352
INFO:tensorflow:loss = 0.6742044, step = 2100 (0.313 sec)
INFO:tensorflow:loss = 0.6742044, step = 2100 (0.313 sec)
INFO:tensorflow:global_step/sec: 319.556
INFO:tensorflow:global_step/sec: 319.556
INFO:tensorflow:loss = 0.6595951, step = 2200 (0.313 sec)
INFO:tensorflow:loss = 0.6595951, step = 2200 (0.313 sec)
INFO:tensorflow:global_step/sec: 317.24
INFO:tensorflow:global_step/sec: 317.24
INFO:tensorflow:loss = 0.64341986, step = 2300 (0.315 sec)
INFO:tensorflow:loss = 0.64341986, step = 2300 (0.315 sec)
INFO:tensorflow:global_step/sec: 318.232
INFO:tensorflow:global_step/sec: 318.232
INFO:tensorflow:loss = 0.6476815, step = 2400 (0.314 sec)
INFO:tensorflow:loss = 0.6476815, step = 2400 (0.314 sec)
INFO:tensorflow:global_step/sec: 314.993
INFO:tensorflow:global_step/sec: 314.993
INFO:tensorflow:loss = 0.648524, step = 2500 (0.317 sec)
INFO:tensorflow:loss = 0.648524, step = 2500 (0.317 sec)
INFO:tensorflow:global_step/sec: 316.759
INFO:tensorflow:global_step/sec: 316.759
INFO:tensorflow:loss = 0.6482441, step = 2600 (0.316 sec)
INFO:tensorflow:loss = 0.6482441, step = 2600 (0.316 sec)
INFO:tensorflow:global_step/sec: 319.15
INFO:tensorflow:global_step/sec: 319.15
INFO:tensorflow:loss = 0.6607532, step = 2700 (0.313 sec)
INFO:tensorflow:loss = 0.6607532, step = 2700 (0.313 sec)
INFO:tensorflow:global_step/sec: 318.635
INFO:tensorflow:global_step/sec: 318.635
INFO:tensorflow:loss = 0.6411531, step = 2800 (0.314 sec)
INFO:tensorflow:loss = 0.6411531, step = 2800 (0.314 sec)
INFO:tensorflow:global_step/sec: 313.575
INFO:tensorflow:global_step/sec: 313.575
INFO:tensorflow:loss = 0.64602387, step = 2900 (0.319 sec)
INFO:tensorflow:loss = 0.64602387, step = 2900 (0.319 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2997...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2997...
INFO:tensorflow:Saving checkpoints for 2997 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 2997 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2997...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2997...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 267.954
INFO:tensorflow:global_step/sec: 267.954
INFO:tensorflow:loss = 0.6540841, step = 3000 (0.373 sec)
INFO:tensorflow:loss = 0.6540841, step = 3000 (0.373 sec)
INFO:tensorflow:global_step/sec: 317.834
INFO:tensorflow:global_step/sec: 317.834
INFO:tensorflow:loss = 0.6407366, step = 3100 (0.315 sec)
INFO:tensorflow:loss = 0.6407366, step = 3100 (0.315 sec)
INFO:tensorflow:global_step/sec: 307.049
INFO:tensorflow:global_step/sec: 307.049
INFO:tensorflow:loss = 0.5994857, step = 3200 (0.326 sec)
INFO:tensorflow:loss = 0.5994857, step = 3200 (0.326 sec)
INFO:tensorflow:global_step/sec: 321.404
INFO:tensorflow:global_step/sec: 321.404
INFO:tensorflow:loss = 0.6267687, step = 3300 (0.311 sec)
INFO:tensorflow:loss = 0.6267687, step = 3300 (0.311 sec)
INFO:tensorflow:global_step/sec: 315.727
INFO:tensorflow:global_step/sec: 315.727
INFO:tensorflow:loss = 0.6187229, step = 3400 (0.317 sec)
INFO:tensorflow:loss = 0.6187229, step = 3400 (0.317 sec)
INFO:tensorflow:global_step/sec: 320.496
INFO:tensorflow:global_step/sec: 320.496
INFO:tensorflow:loss = 0.6236157, step = 3500 (0.312 sec)
INFO:tensorflow:loss = 0.6236157, step = 3500 (0.312 sec)
INFO:tensorflow:global_step/sec: 322.862
INFO:tensorflow:global_step/sec: 322.862
INFO:tensorflow:loss = 0.60653037, step = 3600 (0.310 sec)
INFO:tensorflow:loss = 0.60653037, step = 3600 (0.310 sec)
INFO:tensorflow:global_step/sec: 317.102
INFO:tensorflow:global_step/sec: 317.102
INFO:tensorflow:loss = 0.59571797, step = 3700 (0.315 sec)
INFO:tensorflow:loss = 0.59571797, step = 3700 (0.315 sec)
INFO:tensorflow:global_step/sec: 315.796
INFO:tensorflow:global_step/sec: 315.796
INFO:tensorflow:loss = 0.6154198, step = 3800 (0.317 sec)
INFO:tensorflow:loss = 0.6154198, step = 3800 (0.317 sec)
INFO:tensorflow:global_step/sec: 318.18
INFO:tensorflow:global_step/sec: 318.18
INFO:tensorflow:loss = 0.6036258, step = 3900 (0.314 sec)
INFO:tensorflow:loss = 0.6036258, step = 3900 (0.314 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3996...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3996...
INFO:tensorflow:Saving checkpoints for 3996 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 3996 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3996...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3996...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 270.578
INFO:tensorflow:global_step/sec: 270.578
INFO:tensorflow:loss = 0.60188603, step = 4000 (0.369 sec)
INFO:tensorflow:loss = 0.60188603, step = 4000 (0.369 sec)
INFO:tensorflow:global_step/sec: 313.616
INFO:tensorflow:global_step/sec: 313.616
INFO:tensorflow:loss = 0.58656734, step = 4100 (0.319 sec)
INFO:tensorflow:loss = 0.58656734, step = 4100 (0.319 sec)
INFO:tensorflow:global_step/sec: 315.074
INFO:tensorflow:global_step/sec: 315.074
INFO:tensorflow:loss = 0.6106912, step = 4200 (0.317 sec)
INFO:tensorflow:loss = 0.6106912, step = 4200 (0.317 sec)
INFO:tensorflow:global_step/sec: 316.827
INFO:tensorflow:global_step/sec: 316.827
INFO:tensorflow:loss = 0.5886101, step = 4300 (0.316 sec)
INFO:tensorflow:loss = 0.5886101, step = 4300 (0.316 sec)
INFO:tensorflow:global_step/sec: 317.999
INFO:tensorflow:global_step/sec: 317.999
INFO:tensorflow:loss = 0.5817787, step = 4400 (0.314 sec)
INFO:tensorflow:loss = 0.5817787, step = 4400 (0.314 sec)
INFO:tensorflow:global_step/sec: 318.806
INFO:tensorflow:global_step/sec: 318.806
INFO:tensorflow:loss = 0.60557437, step = 4500 (0.314 sec)
INFO:tensorflow:loss = 0.60557437, step = 4500 (0.314 sec)
INFO:tensorflow:global_step/sec: 316.203
INFO:tensorflow:global_step/sec: 316.203
INFO:tensorflow:loss = 0.5599436, step = 4600 (0.316 sec)
INFO:tensorflow:loss = 0.5599436, step = 4600 (0.316 sec)
INFO:tensorflow:global_step/sec: 290.783
INFO:tensorflow:global_step/sec: 290.783
INFO:tensorflow:loss = 0.55012953, step = 4700 (0.344 sec)
INFO:tensorflow:loss = 0.55012953, step = 4700 (0.344 sec)
INFO:tensorflow:global_step/sec: 303.114
INFO:tensorflow:global_step/sec: 303.114
INFO:tensorflow:loss = 0.575355, step = 4800 (0.330 sec)
INFO:tensorflow:loss = 0.575355, step = 4800 (0.330 sec)
INFO:tensorflow:global_step/sec: 316.356
INFO:tensorflow:global_step/sec: 316.356
INFO:tensorflow:loss = 0.52631307, step = 4900 (0.316 sec)
INFO:tensorflow:loss = 0.52631307, step = 4900 (0.316 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4995...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4995...
INFO:tensorflow:Saving checkpoints for 4995 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 4995 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4995...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4995...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 263.963
INFO:tensorflow:global_step/sec: 263.963
INFO:tensorflow:loss = 0.6222931, step = 5000 (0.379 sec)
INFO:tensorflow:loss = 0.6222931, step = 5000 (0.379 sec)
INFO:tensorflow:global_step/sec: 317.786
INFO:tensorflow:global_step/sec: 317.786
INFO:tensorflow:loss = 0.5423033, step = 5100 (0.315 sec)
INFO:tensorflow:loss = 0.5423033, step = 5100 (0.315 sec)
INFO:tensorflow:global_step/sec: 315.953
INFO:tensorflow:global_step/sec: 315.953
INFO:tensorflow:loss = 0.58778507, step = 5200 (0.316 sec)
INFO:tensorflow:loss = 0.58778507, step = 5200 (0.316 sec)
INFO:tensorflow:global_step/sec: 316.398
INFO:tensorflow:global_step/sec: 316.398
INFO:tensorflow:loss = 0.5667932, step = 5300 (0.316 sec)
INFO:tensorflow:loss = 0.5667932, step = 5300 (0.316 sec)
INFO:tensorflow:global_step/sec: 314.472
INFO:tensorflow:global_step/sec: 314.472
INFO:tensorflow:loss = 0.55672485, step = 5400 (0.318 sec)
INFO:tensorflow:loss = 0.55672485, step = 5400 (0.318 sec)
INFO:tensorflow:global_step/sec: 319.228
INFO:tensorflow:global_step/sec: 319.228
INFO:tensorflow:loss = 0.48792782, step = 5500 (0.313 sec)
INFO:tensorflow:loss = 0.48792782, step = 5500 (0.313 sec)
INFO:tensorflow:global_step/sec: 314.755
INFO:tensorflow:global_step/sec: 314.755
INFO:tensorflow:loss = 0.5343876, step = 5600 (0.318 sec)
INFO:tensorflow:loss = 0.5343876, step = 5600 (0.318 sec)
INFO:tensorflow:global_step/sec: 307.454
INFO:tensorflow:global_step/sec: 307.454
INFO:tensorflow:loss = 0.5905913, step = 5700 (0.325 sec)
INFO:tensorflow:loss = 0.5905913, step = 5700 (0.325 sec)
INFO:tensorflow:global_step/sec: 316.106
INFO:tensorflow:global_step/sec: 316.106
INFO:tensorflow:loss = 0.5572646, step = 5800 (0.317 sec)
INFO:tensorflow:loss = 0.5572646, step = 5800 (0.317 sec)
INFO:tensorflow:global_step/sec: 315.98
INFO:tensorflow:global_step/sec: 315.98
INFO:tensorflow:loss = 0.60143465, step = 5900 (0.316 sec)
INFO:tensorflow:loss = 0.60143465, step = 5900 (0.316 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5994...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5994...
INFO:tensorflow:Saving checkpoints for 5994 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 5994 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5994...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5994...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 259.989
INFO:tensorflow:global_step/sec: 259.989
INFO:tensorflow:loss = 0.53993654, step = 6000 (0.384 sec)
INFO:tensorflow:loss = 0.53993654, step = 6000 (0.384 sec)
INFO:tensorflow:global_step/sec: 304.989
INFO:tensorflow:global_step/sec: 304.989
INFO:tensorflow:loss = 0.4338865, step = 6100 (0.329 sec)
INFO:tensorflow:loss = 0.4338865, step = 6100 (0.329 sec)
INFO:tensorflow:global_step/sec: 307.788
INFO:tensorflow:global_step/sec: 307.788
INFO:tensorflow:loss = 0.5001062, step = 6200 (0.324 sec)
INFO:tensorflow:loss = 0.5001062, step = 6200 (0.324 sec)
INFO:tensorflow:global_step/sec: 308.142
INFO:tensorflow:global_step/sec: 308.142
INFO:tensorflow:loss = 0.55433446, step = 6300 (0.325 sec)
INFO:tensorflow:loss = 0.55433446, step = 6300 (0.325 sec)
INFO:tensorflow:global_step/sec: 320.604
INFO:tensorflow:global_step/sec: 320.604
INFO:tensorflow:loss = 0.49421448, step = 6400 (0.312 sec)
INFO:tensorflow:loss = 0.49421448, step = 6400 (0.312 sec)
INFO:tensorflow:global_step/sec: 315.227
INFO:tensorflow:global_step/sec: 315.227
INFO:tensorflow:loss = 0.49629697, step = 6500 (0.317 sec)
INFO:tensorflow:loss = 0.49629697, step = 6500 (0.317 sec)
INFO:tensorflow:global_step/sec: 308.916
INFO:tensorflow:global_step/sec: 308.916
INFO:tensorflow:loss = 0.46926093, step = 6600 (0.324 sec)
INFO:tensorflow:loss = 0.46926093, step = 6600 (0.324 sec)
INFO:tensorflow:global_step/sec: 310.961
INFO:tensorflow:global_step/sec: 310.961
INFO:tensorflow:loss = 0.55002207, step = 6700 (0.322 sec)
INFO:tensorflow:loss = 0.55002207, step = 6700 (0.322 sec)
INFO:tensorflow:global_step/sec: 315.179
INFO:tensorflow:global_step/sec: 315.179
INFO:tensorflow:loss = 0.46945956, step = 6800 (0.317 sec)
INFO:tensorflow:loss = 0.46945956, step = 6800 (0.317 sec)
INFO:tensorflow:global_step/sec: 318.957
INFO:tensorflow:global_step/sec: 318.957
INFO:tensorflow:loss = 0.4574453, step = 6900 (0.313 sec)
INFO:tensorflow:loss = 0.4574453, step = 6900 (0.313 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6993...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6993...
INFO:tensorflow:Saving checkpoints for 6993 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 6993 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6993...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6993...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 270.326
INFO:tensorflow:global_step/sec: 270.326
INFO:tensorflow:loss = 0.47837937, step = 7000 (0.370 sec)
INFO:tensorflow:loss = 0.47837937, step = 7000 (0.370 sec)
INFO:tensorflow:global_step/sec: 316.537
INFO:tensorflow:global_step/sec: 316.537
INFO:tensorflow:loss = 0.52828425, step = 7100 (0.316 sec)
INFO:tensorflow:loss = 0.52828425, step = 7100 (0.316 sec)
INFO:tensorflow:global_step/sec: 317.01
INFO:tensorflow:global_step/sec: 317.01
INFO:tensorflow:loss = 0.44859207, step = 7200 (0.315 sec)
INFO:tensorflow:loss = 0.44859207, step = 7200 (0.315 sec)
INFO:tensorflow:global_step/sec: 316.803
INFO:tensorflow:global_step/sec: 316.803
INFO:tensorflow:loss = 0.5082972, step = 7300 (0.316 sec)
INFO:tensorflow:loss = 0.5082972, step = 7300 (0.316 sec)
INFO:tensorflow:global_step/sec: 313.608
INFO:tensorflow:global_step/sec: 313.608
INFO:tensorflow:loss = 0.5459806, step = 7400 (0.319 sec)
INFO:tensorflow:loss = 0.5459806, step = 7400 (0.319 sec)
INFO:tensorflow:global_step/sec: 317.974
INFO:tensorflow:global_step/sec: 317.974
INFO:tensorflow:loss = 0.4239344, step = 7500 (0.315 sec)
INFO:tensorflow:loss = 0.4239344, step = 7500 (0.315 sec)
INFO:tensorflow:global_step/sec: 320.183
INFO:tensorflow:global_step/sec: 320.183
INFO:tensorflow:loss = 0.39605576, step = 7600 (0.312 sec)
INFO:tensorflow:loss = 0.39605576, step = 7600 (0.312 sec)
INFO:tensorflow:global_step/sec: 316.793
INFO:tensorflow:global_step/sec: 316.793
INFO:tensorflow:loss = 0.40292284, step = 7700 (0.315 sec)
INFO:tensorflow:loss = 0.40292284, step = 7700 (0.315 sec)
INFO:tensorflow:global_step/sec: 316.283
INFO:tensorflow:global_step/sec: 316.283
INFO:tensorflow:loss = 0.50725543, step = 7800 (0.317 sec)
INFO:tensorflow:loss = 0.50725543, step = 7800 (0.317 sec)
INFO:tensorflow:global_step/sec: 317.901
INFO:tensorflow:global_step/sec: 317.901
INFO:tensorflow:loss = 0.5281556, step = 7900 (0.314 sec)
INFO:tensorflow:loss = 0.5281556, step = 7900 (0.314 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7992...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7992...
INFO:tensorflow:Saving checkpoints for 7992 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 7992 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7992...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7992...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 269.002
INFO:tensorflow:global_step/sec: 269.002
INFO:tensorflow:loss = 0.5434435, step = 8000 (0.371 sec)
INFO:tensorflow:loss = 0.5434435, step = 8000 (0.371 sec)
INFO:tensorflow:global_step/sec: 307.481
INFO:tensorflow:global_step/sec: 307.481
INFO:tensorflow:loss = 0.49656752, step = 8100 (0.325 sec)
INFO:tensorflow:loss = 0.49656752, step = 8100 (0.325 sec)
INFO:tensorflow:global_step/sec: 319.91
INFO:tensorflow:global_step/sec: 319.91
INFO:tensorflow:loss = 0.4451404, step = 8200 (0.313 sec)
INFO:tensorflow:loss = 0.4451404, step = 8200 (0.313 sec)
INFO:tensorflow:global_step/sec: 319.653
INFO:tensorflow:global_step/sec: 319.653
INFO:tensorflow:loss = 0.45703056, step = 8300 (0.313 sec)
INFO:tensorflow:loss = 0.45703056, step = 8300 (0.313 sec)
INFO:tensorflow:global_step/sec: 317.549
INFO:tensorflow:global_step/sec: 317.549
INFO:tensorflow:loss = 0.41733345, step = 8400 (0.315 sec)
INFO:tensorflow:loss = 0.41733345, step = 8400 (0.315 sec)
INFO:tensorflow:global_step/sec: 317.191
INFO:tensorflow:global_step/sec: 317.191
INFO:tensorflow:loss = 0.3974568, step = 8500 (0.315 sec)
INFO:tensorflow:loss = 0.3974568, step = 8500 (0.315 sec)
INFO:tensorflow:global_step/sec: 313.609
INFO:tensorflow:global_step/sec: 313.609
INFO:tensorflow:loss = 0.53810954, step = 8600 (0.319 sec)
INFO:tensorflow:loss = 0.53810954, step = 8600 (0.319 sec)
INFO:tensorflow:global_step/sec: 314.27
INFO:tensorflow:global_step/sec: 314.27
INFO:tensorflow:loss = 0.3899591, step = 8700 (0.318 sec)
INFO:tensorflow:loss = 0.3899591, step = 8700 (0.318 sec)
INFO:tensorflow:global_step/sec: 321.076
INFO:tensorflow:global_step/sec: 321.076
INFO:tensorflow:loss = 0.48265937, step = 8800 (0.311 sec)
INFO:tensorflow:loss = 0.48265937, step = 8800 (0.311 sec)
INFO:tensorflow:global_step/sec: 321.653
INFO:tensorflow:global_step/sec: 321.653
INFO:tensorflow:loss = 0.4027953, step = 8900 (0.311 sec)
INFO:tensorflow:loss = 0.4027953, step = 8900 (0.311 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8991...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8991...
INFO:tensorflow:Saving checkpoints for 8991 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 8991 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8991...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8991...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 270.714
INFO:tensorflow:global_step/sec: 270.714
INFO:tensorflow:loss = 0.43588352, step = 9000 (0.369 sec)
INFO:tensorflow:loss = 0.43588352, step = 9000 (0.369 sec)
INFO:tensorflow:global_step/sec: 317.45
INFO:tensorflow:global_step/sec: 317.45
INFO:tensorflow:loss = 0.3872719, step = 9100 (0.315 sec)
INFO:tensorflow:loss = 0.3872719, step = 9100 (0.315 sec)
INFO:tensorflow:global_step/sec: 319.857
INFO:tensorflow:global_step/sec: 319.857
INFO:tensorflow:loss = 0.3554761, step = 9200 (0.313 sec)
INFO:tensorflow:loss = 0.3554761, step = 9200 (0.313 sec)
INFO:tensorflow:global_step/sec: 321.857
INFO:tensorflow:global_step/sec: 321.857
INFO:tensorflow:loss = 0.4058962, step = 9300 (0.311 sec)
INFO:tensorflow:loss = 0.4058962, step = 9300 (0.311 sec)
INFO:tensorflow:global_step/sec: 316.452
INFO:tensorflow:global_step/sec: 316.452
INFO:tensorflow:loss = 0.41788667, step = 9400 (0.316 sec)
INFO:tensorflow:loss = 0.41788667, step = 9400 (0.316 sec)
INFO:tensorflow:global_step/sec: 319.173
INFO:tensorflow:global_step/sec: 319.173
INFO:tensorflow:loss = 0.44615695, step = 9500 (0.313 sec)
INFO:tensorflow:loss = 0.44615695, step = 9500 (0.313 sec)
INFO:tensorflow:global_step/sec: 305.556
INFO:tensorflow:global_step/sec: 305.556
INFO:tensorflow:loss = 0.46945286, step = 9600 (0.327 sec)
INFO:tensorflow:loss = 0.46945286, step = 9600 (0.327 sec)
INFO:tensorflow:global_step/sec: 313.155
INFO:tensorflow:global_step/sec: 313.155
INFO:tensorflow:loss = 0.3813464, step = 9700 (0.319 sec)
INFO:tensorflow:loss = 0.3813464, step = 9700 (0.319 sec)
INFO:tensorflow:global_step/sec: 317.802
INFO:tensorflow:global_step/sec: 317.802
INFO:tensorflow:loss = 0.45685893, step = 9800 (0.315 sec)
INFO:tensorflow:loss = 0.45685893, step = 9800 (0.315 sec)
INFO:tensorflow:global_step/sec: 317.092
INFO:tensorflow:global_step/sec: 317.092
INFO:tensorflow:loss = 0.45004654, step = 9900 (0.315 sec)
INFO:tensorflow:loss = 0.45004654, step = 9900 (0.315 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9990...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9990...
INFO:tensorflow:Saving checkpoints for 9990 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 9990 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9990...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9990...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10000...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10000...
INFO:tensorflow:Saving checkpoints for 10000 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Saving checkpoints for 10000 into /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10000...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10000...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-30T02:11:05
INFO:tensorflow:Starting evaluation at 2021-09-30T02:11:05
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 4.91260s
INFO:tensorflow:Inference Time : 4.91260s
INFO:tensorflow:Finished evaluation at 2021-09-30-02:11:10
INFO:tensorflow:Finished evaluation at 2021-09-30-02:11:10
INFO:tensorflow:Saving dict for global step 10000: accuracy = 0.7976, global_step = 10000, loss = 0.4515407
INFO:tensorflow:Saving dict for global step 10000: accuracy = 0.7976, global_step = 10000, loss = 0.4515407
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10000: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10000: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Performing the final export in the end of training.
INFO:tensorflow:Performing the final export in the end of training.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
WARNING:tensorflow:From /home/kbuilder/.local/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default']
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['serving_default']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/export/imdb/temp-1632967870/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/export/imdb/temp-1632967870/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/export/imdb/temp-1632967870/saved_model.pb
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/export/imdb/temp-1632967870/saved_model.pb
INFO:tensorflow:Loss for final step: 0.48604894.
INFO:tensorflow:Loss for final step: 0.48604894.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval']
INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval']
WARNING:tensorflow:Export includes no default signature!
WARNING:tensorflow:Export includes no default signature!
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-TFMA/temp-1632967871/assets
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-TFMA/temp-1632967871/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-TFMA/temp-1632967871/saved_model.pb
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-09-30T02_07_53.425213-elhvkvsv/Trainer/model_run/9/Format-TFMA/temp-1632967871/saved_model.pb
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/serving_model_dir/saved_model.pb"
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/eval_model_dir/saved_model.pb"

نلقي نظرة خاطفة على نموذج تدريب التي تم تصديرها من Trainer .

train_uri = trainer.outputs['model'].get()[0].uri
serving_model_path = os.path.join(train_uri, 'Format-Serving')
exported_model = tf.saved_model.load(serving_model_path)
exported_model.graph.get_operations()[:10] + ["..."]
[<tf.Operation 'global_step/Initializer/zeros' type=Const>,
 <tf.Operation 'global_step' type=VarHandleOp>,
 <tf.Operation 'global_step/IsInitialized/VarIsInitializedOp' type=VarIsInitializedOp>,
 <tf.Operation 'global_step/Assign' type=AssignVariableOp>,
 <tf.Operation 'global_step/Read/ReadVariableOp' type=ReadVariableOp>,
 <tf.Operation 'input_example_tensor' type=Placeholder>,
 <tf.Operation 'ParseExample/ParseExampleV2/names' type=Const>,
 <tf.Operation 'ParseExample/ParseExampleV2/sparse_keys' type=Const>,
 <tf.Operation 'ParseExample/ParseExampleV2/dense_keys' type=Const>,
 <tf.Operation 'ParseExample/ParseExampleV2/ragged_keys' type=Const>,
 '...']

دعنا نتخيل مقاييس النموذج باستخدام Tensorboard.


# Get the URI of the output artifact representing the training logs,
# which is a directory
model_run_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_dir}

خدمة النموذج

يؤثر تنظيم الرسم البياني فقط على سير عمل التدريب عن طريق إضافة مصطلح تنظيم إلى وظيفة الخسارة. نتيجة لذلك ، يظل تقييم النموذج وخدمة سير العمل دون تغيير. ولنفس السبب أننا قد أغفل أيضا مكونات TFX المصب التي تأتي عادة بعد عنصر مدرب مثل مقيم، مروج المخدرات، الخ

استنتاج

لقد أظهرنا استخدام تنظيم الرسم البياني باستخدام إطار عمل التعلم المهيكل العصبي (NSL) في خط أنابيب TFX حتى عندما لا يحتوي الإدخال على رسم بياني واضح. لقد نظرنا في مهمة تصنيف المشاعر لمراجعات أفلام IMDB التي قمنا بتجميع رسم بياني للتشابه بناءً على مراجعة حفلات الزفاف. نحن نشجع المستخدمين على إجراء المزيد من التجارب باستخدام أشكال مختلفة لبناء الرسم البياني ، وتغيير المعلمات الفائقة ، وتغيير مقدار الإشراف ، وتحديد بنى نموذجية مختلفة.