간단한 TFX 파이프라인을 실행하는 짧은 자습서입니다.
이 노트북 기반 자습서에서는 간단한 분류 모델을 위한 TFX 파이프라인을 만들고 실행합니다. 파이프라인은 세 가지 필수 TFX 구성요소인 ExampleGen, Trainer 및 Pusher로 구성됩니다. 파이프라인에는 데이터 가져오기, 모델 학습 및 학습된 모델 내보내기와 같은 가장 최소한의 ML 워크플로가 포함됩니다.
참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.
설정
먼저 TFX Python 패키지를 설치하고 모델에 사용할 데이터 세트를 다운로드해야 합니다.
핍 업그레이드
로컬에서 실행할 때 시스템에서 Pip를 업그레이드하지 않으려면 Colab에서 실행 중인지 확인하세요. 물론 로컬 시스템은 별도로 업그레이드할 수 있습니다.
try:
import colab
!pip install --upgrade pip
except:
pass
TFX 설치
pip install -U tfx
런타임을 다시 시작하셨습니까?
Google Colab을 사용하는 경우 위의 셀을 처음 실행할 때 위의 "RESTART RUNTIME" 버튼을 클릭하거나 "런타임 > 런타임 다시 시작..." 메뉴를 사용하여 런타임을 다시 시작해야 합니다. Colab이 패키지를 로드하는 방식 때문입니다.
TensorFlow 및 TFX 버전을 확인하세요.
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
변수 설정
파이프라인을 정의하는 데 사용되는 몇 가지 변수가 있습니다. 이러한 변수를 원하는 대로 사용자 지정할 수 있습니다. 기본적으로 파이프라인의 모든 출력은 현재 디렉터리 아래에 생성됩니다.
import os
PIPELINE_NAME = "penguin-simple"
# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
예시 데이터 준비
TFX 파이프라인에서 사용할 예제 데이터 세트를 다운로드합니다. 우리가 사용하고있는 데이터 세트는 팔머 펭귄 데이터 세트 다른에 사용되는 TFX 예 .
이 데이터세트에는 네 가지 숫자 기능이 있습니다.
- culmen_length_mm
- culmen_깊이_mm
- 플리퍼_길이_mm
- body_mass_g
모든 기능은 이미 [0,1] 범위를 갖도록 정규화되었습니다. 우리는 예측하는 분류 모델을 구축 할 것입니다 species
펭귄을.
TFX ExampleGen은 디렉토리에서 입력을 읽기 때문에 디렉토리를 만들고 여기에 데이터 세트를 복사해야 합니다.
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_url = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/data/labelled/penguins_processed.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_url, _data_filepath)
('/tmp/tfx-dataijanq9u3/data.csv', <http.client.HTTPMessage at 0x7f487953d110>)
CSV 파일을 간단히 살펴보세요.
head {_data_filepath}
species,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g 0,0.2545454545454545,0.6666666666666666,0.15254237288135594,0.2916666666666667 0,0.26909090909090905,0.5119047619047618,0.23728813559322035,0.3055555555555556 0,0.29818181818181805,0.5833333333333334,0.3898305084745763,0.1527777777777778 0,0.16727272727272732,0.7380952380952381,0.3559322033898305,0.20833333333333334 0,0.26181818181818167,0.892857142857143,0.3050847457627119,0.2638888888888889 0,0.24727272727272717,0.5595238095238096,0.15254237288135594,0.2569444444444444 0,0.25818181818181823,0.773809523809524,0.3898305084745763,0.5486111111111112 0,0.32727272727272727,0.5357142857142859,0.1694915254237288,0.1388888888888889 0,0.23636363636363636,0.9642857142857142,0.3220338983050847,0.3055555555555556
다섯 가지 값을 볼 수 있어야 합니다. species
0, 1 또는 2이며, 다른 모든 기능은 0과 1 사이의 값을 가져야한다.
파이프라인 생성
TFX 파이프라인은 Python API를 사용하여 정의됩니다. 다음 세 가지 구성 요소로 구성된 파이프라인을 정의합니다.
- CsvExampleGen: 데이터 파일을 읽고 추가 처리를 위해 TFX 내부 형식으로 변환합니다. 여러가 있습니다 ExampleGen 다양한 형식들. 이 튜토리얼에서는 CSV 파일 입력을 받는 CsvExampleGen을 사용할 것입니다.
- 트레이너: ML 모델을 교육합니다. 트레이너 구성 요소는 사용자의 모델 정의 코드가 필요합니다. 당신은 모델을 학습하고 _saved 모델 형식으로 저장하는 방법을 지정 TensorFlow API를 사용할 수 있습니다.
- 푸셔: TFX 파이프라인 외부에서 훈련된 모델을 복사합니다. 푸셔 구성 요소는 훈련 ML 모델의 전개 과정을 생각할 수있다.
파이프라인을 실제로 정의하기 전에 먼저 Trainer 구성 요소에 대한 모델 코드를 작성해야 합니다.
모델 학습 코드 작성
TensorFlow Keras API를 사용하여 분류를 위한 간단한 DNN 모델을 생성합니다. 이 모델 훈련 코드는 별도의 파일에 저장됩니다.
이 튜토리얼에서 우리가 사용하는 일반 트레이너 Keras 기반 모델을 지원 TFX의. 당신은 포함 된 파이썬 파일을 작성해야 run_fn
에 대한 엔트리 포인트이다 기능, Trainer
구성 요소를.
_trainer_module_file = 'penguin_trainer.py'
%%writefile {_trainer_module_file}
from typing import List
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_transform.tf_metadata import schema_utils
from tfx import v1 as tfx
from tfx_bsl.public import tfxio
from tensorflow_metadata.proto.v0 import schema_pb2
_FEATURE_KEYS = [
'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
# Since we're not generating or creating a schema, we will instead create
# a feature spec. Since there are a fairly small number of features this is
# manageable for this dataset.
_FEATURE_SPEC = {
**{
feature: tf.io.FixedLenFeature(shape=[1], dtype=tf.float32)
for feature in _FEATURE_KEYS
},
_LABEL_KEY: tf.io.FixedLenFeature(shape=[1], dtype=tf.int64)
}
def _input_fn(file_pattern: List[str],
data_accessor: tfx.components.DataAccessor,
schema: schema_pb2.Schema,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
schema: schema of the input data.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
return data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(
batch_size=batch_size, label_key=_LABEL_KEY),
schema=schema).repeat()
def _build_keras_model() -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
inputs = [keras.layers.Input(shape=(1,), name=f) for f in _FEATURE_KEYS]
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
# This schema is usually either an output of SchemaGen or a manually-curated
# version provided by pipeline author. A schema can also derived from TFT
# graph if a Transform component is used. In the case when either is missing,
# `schema_from_feature_spec` could be used to generate schema from very simple
# feature_spec, but the schema returned would be very primitive.
schema = schema_utils.schema_from_feature_spec(_FEATURE_SPEC)
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
schema,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
schema,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model()
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# The result of the training should be saved in `fn_args.serving_model_dir`
# directory.
model.save(fn_args.serving_model_dir, save_format='tf')
Writing penguin_trainer.py
이제 TFX 파이프라인을 구축하기 위한 모든 준비 단계를 완료했습니다.
파이프라인 정의 작성
TFX 파이프라인을 생성하는 함수를 정의합니다. Pipeline
객체는 TFX 지원하는 파이프 라인 오케스트레이션 시스템 중 하나를 사용하여 실행할 수있는 TFX 파이프 라인을 나타냅니다.
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Creates a three component penguin pipeline with TFX."""
# Brings data into the pipeline.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# Pushes the model to a filesystem destination.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
# Following three components will be included in the pipeline.
components = [
example_gen,
trainer,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
파이프라인 실행
TFX는 파이프라인을 실행하기 위해 여러 오케스트레이터를 지원합니다. 이 튜토리얼에서 우리는 사용 LocalDagRunner
지역 환경에 TFX 파이썬 패키지와 실행 파이프 라인에 포함되어 있습니다. 우리는 종종 TFX 파이프라인을 방향성 순환 그래프를 나타내는 "DAG"라고 부릅니다.
LocalDagRunner
developemnt 및 디버깅을위한 빠른 반복을 제공합니다. TFX는 프로덕션 사용 사례에 적합한 Kubeflow Pipelines 및 Apache Airflow를 비롯한 다른 오케스트레이터도 지원합니다.
참조 클라우드 AI 플랫폼 파이프 라인에 TFX 또는 TFX 공기 흐름 튜토리얼은 다른 오케스트레이션 시스템에 대해 더 배울 수 있습니다.
이제 우리는 만들 LocalDagRunner
a와 통과 Pipeline
우리가 이미 정의 된 함수에서 생성 된 객체를.
파이프라인은 직접 실행되며 ML 모델 교육을 포함하여 파이프라인의 진행 상황에 대한 로그를 볼 수 있습니다.
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
module_file=_trainer_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_trainer.py' (including modules: ['penguin_trainer']). INFO:absl:User module package has hash fingerprint version a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp28n_co8j/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpfb02sbta', '--dist-dir', '/tmp/tmpyu7gi15_'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'; target user module is 'penguin_trainer'. INFO:absl:Full user module path is 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-simple/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-simple/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-dataijanq9u3" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized running bdist_wheel running build running build_py creating build creating build/lib copying penguin_trainer.py -> build/lib installing to /tmp/tmpfb02sbta running install running install_lib copying build/lib/penguin_trainer.py -> /tmp/tmpfb02sbta running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmpfb02sbta/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3.7.egg-info running install_scripts creating /tmp/tmpfb02sbta/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL creating '/tmp/tmpyu7gi15_/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' and adding '/tmp/tmpfb02sbta' to it adding 'penguin_trainer.py' adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc.dist-info/RECORD' removing /tmp/tmpfb02sbta WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 10:44:07.061197 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:44:07.067816 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:44:07.074599 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:44:07.081624 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 1 I1205 10:44:07.136307 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638701046,sum_checksum:1638701046" } } custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_base': '/tmp/tfx-dataijanq9u3', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_file_format': 5, 'output_data_format': 6, 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638701046,sum_checksum:1638701046'}, execution_output_uri='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:44:06.706974', tmp_dir='pipelines/penguin-simple/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-dataijanq9u3" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-simple" , pipeline_run_id='2021-12-05T10:44:06.706974') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-dataijanq9u3/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-simple/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638701046,sum_checksum:1638701046" } } custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-simple.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized INFO:absl:MetadataStore with DB connection initialized I1205 10:44:08.274386 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution 2 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=2, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-simple/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:25648,xor_checksum:1638701046,sum_checksum:1638701046" } } custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638701048257 last_update_time_since_epoch: 1638701048257 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Trainer:model:0" } } , artifact_type: name: "Model" )], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )]}), exec_properties={'custom_config': 'null', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'train_args': '{\n "num_steps": 100\n}', 'eval_args': '{\n "num_steps": 5\n}'}, execution_output_uri='pipelines/penguin-simple/Trainer/.system/executor_execution/2/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Trainer/.system/stateful_working_dir/2021-12-05T10:44:06.706974', tmp_dir='pipelines/penguin-simple/Trainer/.system/executor_execution/2/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-simple.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-simple" , pipeline_run_id='2021-12-05T10:44:06.706974') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'custom_config': 'null', 'module_path': 'penguin_trainer@pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl', 'train_args': '{\n "num_steps": 100\n}', 'eval_args': '{\n "num_steps": 5\n}'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp9yk6w_js', 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'] Processing ./pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-simple/_wheels/tfx_user_code_Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+a7e2e8dccbb913b74904edeec5549d868a2ea392bcd84fbc1965aba698dce3fc INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 culmen_length_mm[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl: body_mass_g[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 3ms/step - loss: 0.4074 - sparse_categorical_accuracy: 0.8755 - val_loss: 0.0760 - val_sparse_categorical_accuracy: 0.9800 2021-12-05 10:44:13.263941: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-simple/Trainer/model/2/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-simple/Trainer/model/2/Format-Serving. ModelRun written to pipelines/penguin-simple/Trainer/model_run/2 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 2 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model/2" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-simple/Trainer/model_run/2" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )]}) for execution 2 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component Trainer is finished. I1205 10:44:13.795414 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is running. I1205 10:44:13.799805 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-simple.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-simple\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:44:13.821346 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'model': [Artifact(artifact: id: 2 type_id: 17 uri: "pipelines/penguin-simple/Trainer/model/2" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638701053803 last_update_time_since_epoch: 1638701053803 , artifact_type: id: 17 name: "Model" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-simple"\n }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-simple/Pusher/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-simple/Pusher/.system/stateful_working_dir/2021-12-05T10:44:06.706974', tmp_dir='pipelines/penguin-simple/Pusher/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-simple.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-simple" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:44:06.706974" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-simple.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-simple\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-simple" , pipeline_run_id='2021-12-05T10:44:06.706974') WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline. INFO:absl:Model version: 1638701053 INFO:absl:Model written to serving path serving_model/penguin-simple/1638701053. INFO:absl:Model pushed to pipelines/penguin-simple/Pusher/pushed_model/3. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-simple/Pusher/pushed_model/3" custom_properties { key: "name" value { string_value: "penguin-simple:2021-12-05T10:44:06.706974:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component Pusher is finished. I1205 10:44:13.851651 30480 rdbms_metadata_access_object.cc:686] No property is defined for the Type
"INFO:absl:Component Pusher가 완료되었습니다."가 표시되어야 합니다. 파이프라인이 성공적으로 완료된 경우 로그 끝에서. 때문에 Pusher
구성 요소는 파이프 라인의 마지막 구성 요소입니다.
푸셔 구성 요소는에 훈련 모델을 밀어 SERVING_MODEL_DIR
는 IS serving_model/penguin-simple
이전 단계에서 변수를 변경하지 않은 경우 디렉토리. Colab의 왼쪽 패널에서 또는 다음 명령을 사용하여 파일 브라우저에서 결과를 볼 수 있습니다.
# List files in created model directory.
find {SERVING_MODEL_DIR}
serving_model/penguin-simple serving_model/penguin-simple/1638701053 serving_model/penguin-simple/1638701053/keras_metadata.pb serving_model/penguin-simple/1638701053/assets serving_model/penguin-simple/1638701053/variables serving_model/penguin-simple/1638701053/variables/variables.data-00000-of-00001 serving_model/penguin-simple/1638701053/variables/variables.index serving_model/penguin-simple/1638701053/saved_model.pb
다음 단계
당신은 더 많은 자원을 찾을 수 있습니다 https://www.tensorflow.org/tfx/tutorials을
참조하시기 바랍니다 TFX 파이프 라인은 이해 TFX에서 다양한 개념에 대해 더 배울 수 있습니다.