सहायता Kaggle पर TensorFlow साथ ग्रेट बैरियर रीफ की रक्षा चैलेंज में शामिल हों

टेंसरफ़्लो :: ऑप्स :: ऑलकंडिडेटसैंपलर

#include <candidate_sampling_ops.h>

एक सीखा हुआ यूग्रीग्राम वितरण के साथ उम्मीदवार के नमूने के लिए लेबल तैयार करता है।

सारांश

उम्मीदवार के नमूने के स्पष्टीकरण और जाने / उम्मीदवार-नमूना पर डेटा प्रारूप देखें।

प्रत्येक बैच के लिए, यह ऑप नमूना उम्मीदवारों के एकल सेट का चयन करता है।

प्रति-बैच के उम्मीदवारों के नमूने की सादगी और कुशल घने मैट्रिक्स गुणन की संभावना है। नुकसान यह है कि सैंपल किए गए अभ्यर्थियों को स्वतंत्र रूप से और सच्चे लेबल के लिए चुना जाना चाहिए।

तर्क:

  • गुंजाइश: एक स्कोप ऑब्जेक्ट
  • true_classes: एक बैच_साइज़ * num_true मैट्रिक्स, जिसमें प्रत्येक पंक्ति में संबंधित मूल लेबल में num_true target_classes की आईडी होती है।
  • num_true: संदर्भ के अनुसार सच्चे लेबल की संख्या।
  • num_sampled: उत्पादन करने के लिए उम्मीदवारों की संख्या।
  • अद्वितीय: यदि अद्वितीय सत्य है, तो हम अस्वीकृति के साथ नमूना लेते हैं, ताकि बैच में सभी सैंपल किए गए उम्मीदवार अद्वितीय हों। पोस्ट-अस्वीकृति नमूना संभावनाओं का अनुमान लगाने के लिए इसके लिए कुछ सन्निकटन की आवश्यकता होती है।

वैकल्पिक विशेषताएँ ( Attrs देखें):

  • बीज: यदि या तो बीज या बीज 2 को गैर-शून्य पर सेट किया जाता है, तो यादृच्छिक संख्या जनरेटर को दिए गए बीज द्वारा बोया जाता है। अन्यथा, यह एक यादृच्छिक बीज द्वारा बोया जाता है।
  • seed2: बीज टकराव से बचने के लिए एक दूसरा बीज।

रिटर्न:

  • Output samped_candidates: लंबाई का एक वेक्टर num_sampled, जिसमें प्रत्येक तत्व एक नमूना उम्मीदवार की आईडी है।
  • Output true_ अप्रत्याशित_count: एक बैच_साइज़ * num_true मैट्रिक्स, प्रत्येक उम्मीदवार के नमूना उम्मीदवारों के बैच में होने की संख्या का प्रतिनिधित्व करने की उम्मीद है। यदि अद्वितीय = सत्य है, तो यह एक संभावना है।
  • Output samped_ अप्रत्याशित_count: लंबाई के एक वेक्टर num_sampled, प्रत्येक नमूना उम्मीदवार के लिए उम्मीदवार के नमूने के एक बैच में होने की संख्या का प्रतिनिधित्व करने की उम्मीद है। यदि अद्वितीय = सत्य है, तो यह एक संभावना है।

कंस्ट्रक्टर और डिस्ट्रक्टर्स

AllCandidateSampler (const :: tensorflow::Scope & scope, :: tensorflow::Input true_classes, int64 num_true, int64 num_sampled, bool unique)
AllCandidateSampler (const :: tensorflow::Scope & scope, :: tensorflow::Input true_classes, int64 num_true, int64 num_sampled, bool unique, const AllCandidateSampler::Attrs & attrs)

सार्वजनिक विशेषताएँ

operation
sampled_candidates
sampled_expected_count
true_expected_count

सार्वजनिक स्थैतिक कार्य

Seed (int64 x)
Seed2 (int64 x)

संरचनाएं

टेंसोफ़्लो :: ऑप्स :: ऑलइंडीडेटसैंपलर :: एट्र्स

वैकल्पिक विशेषता AllCandidateSampler के लिए बसती है

सार्वजनिक विशेषताएँ

ऑपरेशन

Operation operation

samped_candidates

::tensorflow::Output sampled_candidates

नमूना

::tensorflow::Output sampled_expected_count

true_ अप्रत्याशित_काउंट

::tensorflow::Output true_expected_count

सार्वजनिक कार्य

ऑलकंडिडेटसैंपलर

 AllCandidateSampler(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input true_classes,
  int64 num_true,
  int64 num_sampled,
  bool unique
)

ऑलकैंडिडेटसैंपलर

 AllCandidateSampler(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input true_classes,
  int64 num_true,
  int64 num_sampled,
  bool unique,
  const AllCandidateSampler::Attrs & attrs
)

सार्वजनिक स्थैतिक कार्य

बीज

Attrs Seed(
  int64 x
)

बीज २

Attrs Seed2(
  int64 x
)
है