¡El Día de la Comunidad de ML es el 9 de noviembre! Únase a nosotros para recibir actualizaciones de TensorFlow, JAX, y más Más información

Reentrenamiento de un clasificador de imágenes

Ver en TensorFlow.org Ejecutar en Google Colab Ver en GitHub Descargar cuaderno Ver modelos TF Hub

Introducción

Los modelos de clasificación de imágenes tienen millones de parámetros. Entrenarlos desde cero requiere una gran cantidad de datos de entrenamiento etiquetados y mucha potencia informática. El aprendizaje por transferencia es una técnica que ataja gran parte de esto al tomar una parte de un modelo que ya ha sido entrenado en una tarea relacionada y reutilizarlo en un nuevo modelo.

Este Colab demuestra cómo crear un modelo de Keras para clasificar cinco especies de flores mediante el uso de un modelo guardado TF2 previamente entrenado de TensorFlow Hub para la extracción de características de imagen, entrenado en el conjunto de datos ImageNet mucho más grande y general. Opcionalmente, el extractor de características se puede entrenar ("ajustar") junto con el clasificador recién agregado.

¿Está buscando una herramienta en su lugar?

Este es un tutorial de codificación de TensorFlow. Si quieres una herramienta que simplemente se basa el modelo TensorFlow o TFLite para, echar un vistazo a la make_image_classifier herramienta de línea de comando que se lleva instalado por el paquete PIP tensorflow-hub[make_image_classifier] , o por esta colab TFLite.

Configuración

import itertools
import os

import matplotlib.pylab as plt
import numpy as np

import tensorflow as tf
import tensorflow_hub as hub

print("TF version:", tf.__version__)
print("Hub version:", hub.__version__)
print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE")
TF version: 2.6.0
Hub version: 0.12.0
GPU is available

Seleccione el módulo TF2 SavedModel para usar

Para empezar, utilice https: //tfhub.dev/ google / IMAGEnet / mobilenet_v2_100_224 / feature_vector / 4 . La misma URL se puede utilizar en el código para identificar el modelo guardado y en su navegador para mostrar su documentación. (Tenga en cuenta que los modelos en formato TF1 Hub no funcionarán aquí).

Puede encontrar más modelos de TF2 que generan vectores de características de imagen aquí .

Hay varios modelos posibles para probar. Todo lo que necesita hacer es seleccionar uno diferente en la celda de abajo y seguir con el cuaderno.

model_name = "efficientnetv2-xl-21k" # @param ['efficientnetv2-s', 'efficientnetv2-m', 'efficientnetv2-l', 'efficientnetv2-s-21k', 'efficientnetv2-m-21k', 'efficientnetv2-l-21k', 'efficientnetv2-xl-21k', 'efficientnetv2-b0-21k', 'efficientnetv2-b1-21k', 'efficientnetv2-b2-21k', 'efficientnetv2-b3-21k', 'efficientnetv2-s-21k-ft1k', 'efficientnetv2-m-21k-ft1k', 'efficientnetv2-l-21k-ft1k', 'efficientnetv2-xl-21k-ft1k', 'efficientnetv2-b0-21k-ft1k', 'efficientnetv2-b1-21k-ft1k', 'efficientnetv2-b2-21k-ft1k', 'efficientnetv2-b3-21k-ft1k', 'efficientnetv2-b0', 'efficientnetv2-b1', 'efficientnetv2-b2', 'efficientnetv2-b3', 'efficientnet_b0', 'efficientnet_b1', 'efficientnet_b2', 'efficientnet_b3', 'efficientnet_b4', 'efficientnet_b5', 'efficientnet_b6', 'efficientnet_b7', 'bit_s-r50x1', 'inception_v3', 'inception_resnet_v2', 'resnet_v1_50', 'resnet_v1_101', 'resnet_v1_152', 'resnet_v2_50', 'resnet_v2_101', 'resnet_v2_152', 'nasnet_large', 'nasnet_mobile', 'pnasnet_large', 'mobilenet_v2_100_224', 'mobilenet_v2_130_224', 'mobilenet_v2_140_224', 'mobilenet_v3_small_100_224', 'mobilenet_v3_small_075_224', 'mobilenet_v3_large_100_224', 'mobilenet_v3_large_075_224']

model_handle_map = {
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/feature_vector/2",
  "efficientnetv2-m": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_m/feature_vector/2",
  "efficientnetv2-l": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_l/feature_vector/2",
  "efficientnetv2-s-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_s/feature_vector/2",
  "efficientnetv2-m-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_m/feature_vector/2",
  "efficientnetv2-l-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_l/feature_vector/2",
  "efficientnetv2-xl-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2",
  "efficientnetv2-b0-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b0/feature_vector/2",
  "efficientnetv2-b1-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b1/feature_vector/2",
  "efficientnetv2-b2-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b2/feature_vector/2",
  "efficientnetv2-b3-21k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_b3/feature_vector/2",
  "efficientnetv2-s-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_s/feature_vector/2",
  "efficientnetv2-m-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_m/feature_vector/2",
  "efficientnetv2-l-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_l/feature_vector/2",
  "efficientnetv2-xl-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_xl/feature_vector/2",
  "efficientnetv2-b0-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b0/feature_vector/2",
  "efficientnetv2-b1-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b1/feature_vector/2",
  "efficientnetv2-b2-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b2/feature_vector/2",
  "efficientnetv2-b3-21k-ft1k": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_ft1k_b3/feature_vector/2",
  "efficientnetv2-b0": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b0/feature_vector/2",
  "efficientnetv2-b1": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b1/feature_vector/2",
  "efficientnetv2-b2": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b2/feature_vector/2",
  "efficientnetv2-b3": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_b3/feature_vector/2",
  "efficientnet_b0": "https://tfhub.dev/tensorflow/efficientnet/b0/feature-vector/1",
  "efficientnet_b1": "https://tfhub.dev/tensorflow/efficientnet/b1/feature-vector/1",
  "efficientnet_b2": "https://tfhub.dev/tensorflow/efficientnet/b2/feature-vector/1",
  "efficientnet_b3": "https://tfhub.dev/tensorflow/efficientnet/b3/feature-vector/1",
  "efficientnet_b4": "https://tfhub.dev/tensorflow/efficientnet/b4/feature-vector/1",
  "efficientnet_b5": "https://tfhub.dev/tensorflow/efficientnet/b5/feature-vector/1",
  "efficientnet_b6": "https://tfhub.dev/tensorflow/efficientnet/b6/feature-vector/1",
  "efficientnet_b7": "https://tfhub.dev/tensorflow/efficientnet/b7/feature-vector/1",
  "bit_s-r50x1": "https://tfhub.dev/google/bit/s-r50x1/1",
  "inception_v3": "https://tfhub.dev/google/imagenet/inception_v3/feature-vector/4",
  "inception_resnet_v2": "https://tfhub.dev/google/imagenet/inception_resnet_v2/feature-vector/4",
  "resnet_v1_50": "https://tfhub.dev/google/imagenet/resnet_v1_50/feature-vector/4",
  "resnet_v1_101": "https://tfhub.dev/google/imagenet/resnet_v1_101/feature-vector/4",
  "resnet_v1_152": "https://tfhub.dev/google/imagenet/resnet_v1_152/feature-vector/4",
  "resnet_v2_50": "https://tfhub.dev/google/imagenet/resnet_v2_50/feature-vector/4",
  "resnet_v2_101": "https://tfhub.dev/google/imagenet/resnet_v2_101/feature-vector/4",
  "resnet_v2_152": "https://tfhub.dev/google/imagenet/resnet_v2_152/feature-vector/4",
  "nasnet_large": "https://tfhub.dev/google/imagenet/nasnet_large/feature_vector/4",
  "nasnet_mobile": "https://tfhub.dev/google/imagenet/nasnet_mobile/feature_vector/4",
  "pnasnet_large": "https://tfhub.dev/google/imagenet/pnasnet_large/feature_vector/4",
  "mobilenet_v2_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4",
  "mobilenet_v2_130_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_130_224/feature_vector/4",
  "mobilenet_v2_140_224": "https://tfhub.dev/google/imagenet/mobilenet_v2_140_224/feature_vector/4",
  "mobilenet_v3_small_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_100_224/feature_vector/5",
  "mobilenet_v3_small_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_small_075_224/feature_vector/5",
  "mobilenet_v3_large_100_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5",
  "mobilenet_v3_large_075_224": "https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/feature_vector/5",
}

model_image_size_map = {
  "efficientnetv2-s": 384,
  "efficientnetv2-m": 480,
  "efficientnetv2-l": 480,
  "efficientnetv2-b0": 224,
  "efficientnetv2-b1": 240,
  "efficientnetv2-b2": 260,
  "efficientnetv2-b3": 300,
  "efficientnetv2-s-21k": 384,
  "efficientnetv2-m-21k": 480,
  "efficientnetv2-l-21k": 480,
  "efficientnetv2-xl-21k": 512,
  "efficientnetv2-b0-21k": 224,
  "efficientnetv2-b1-21k": 240,
  "efficientnetv2-b2-21k": 260,
  "efficientnetv2-b3-21k": 300,
  "efficientnetv2-s-21k-ft1k": 384,
  "efficientnetv2-m-21k-ft1k": 480,
  "efficientnetv2-l-21k-ft1k": 480,
  "efficientnetv2-xl-21k-ft1k": 512,
  "efficientnetv2-b0-21k-ft1k": 224,
  "efficientnetv2-b1-21k-ft1k": 240,
  "efficientnetv2-b2-21k-ft1k": 260,
  "efficientnetv2-b3-21k-ft1k": 300, 
  "efficientnet_b0": 224,
  "efficientnet_b1": 240,
  "efficientnet_b2": 260,
  "efficientnet_b3": 300,
  "efficientnet_b4": 380,
  "efficientnet_b5": 456,
  "efficientnet_b6": 528,
  "efficientnet_b7": 600,
  "inception_v3": 299,
  "inception_resnet_v2": 299,
  "nasnet_large": 331,
  "pnasnet_large": 331,
}

model_handle = model_handle_map.get(model_name)
pixels = model_image_size_map.get(model_name, 224)

print(f"Selected model: {model_name} : {model_handle}")

IMAGE_SIZE = (pixels, pixels)
print(f"Input size {IMAGE_SIZE}")

BATCH_SIZE = 16
Selected model: efficientnetv2-xl-21k : https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2
Input size (512, 512)

Configurar el conjunto de datos de Flowers

Las entradas se redimensionan adecuadamente para el módulo seleccionado. El aumento del conjunto de datos (es decir, distorsiones aleatorias de una imagen cada vez que se lee) mejora el entrenamiento, especialmente. al realizar un ajuste fino.

data_dir = tf.keras.utils.get_file(
    'flower_photos',
    'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
    untar=True)
Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
228818944/228813984 [==============================] - 7s 0us/step
228827136/228813984 [==============================] - 7s 0us/step

Found 3670 files belonging to 5 classes.
Using 2936 files for training.
Found 3670 files belonging to 5 classes.
Using 734 files for validation.

Definiendo el modelo

Todo lo que necesita es poner un clasificador lineal en la parte superior de la feature_extractor_layer con el módulo de concentradores.

Para la velocidad, comenzamos con un no entrenable feature_extractor_layer , pero también se puede permitir el ajuste fino para una mayor precisión.

do_fine_tuning = False
print("Building model with", model_handle)
model = tf.keras.Sequential([
    # Explicitly define the input shape so the model can be properly
    # loaded by the TFLiteConverter
    tf.keras.layers.InputLayer(input_shape=IMAGE_SIZE + (3,)),
    hub.KerasLayer(model_handle, trainable=do_fine_tuning),
    tf.keras.layers.Dropout(rate=0.2),
    tf.keras.layers.Dense(len(class_names),
                          kernel_regularizer=tf.keras.regularizers.l2(0.0001))
])
model.build((None,)+IMAGE_SIZE+(3,))
model.summary()
Building model with https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet21k_xl/feature_vector/2
Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
keras_layer (KerasLayer)     (None, 1280)              207615832 
_________________________________________________________________
dropout (Dropout)            (None, 1280)              0         
_________________________________________________________________
dense (Dense)                (None, 5)                 6405      
=================================================================
Total params: 207,622,237
Trainable params: 6,405
Non-trainable params: 207,615,832
_________________________________________________________________

Entrenando el modelo

model.compile(
  optimizer=tf.keras.optimizers.SGD(learning_rate=0.005, momentum=0.9), 
  loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True, label_smoothing=0.1),
  metrics=['accuracy'])
steps_per_epoch = train_size // BATCH_SIZE
validation_steps = valid_size // BATCH_SIZE
hist = model.fit(
    train_ds,
    epochs=5, steps_per_epoch=steps_per_epoch,
    validation_data=val_ds,
    validation_steps=validation_steps).history
Epoch 1/5
183/183 [==============================] - 128s 536ms/step - loss: 0.8901 - accuracy: 0.8958 - val_loss: 0.6734 - val_accuracy: 0.9458
Epoch 2/5
183/183 [==============================] - 94s 510ms/step - loss: 0.6460 - accuracy: 0.9442 - val_loss: 0.7162 - val_accuracy: 0.9375
Epoch 3/5
183/183 [==============================] - 93s 507ms/step - loss: 0.6038 - accuracy: 0.9572 - val_loss: 0.5917 - val_accuracy: 0.9625
Epoch 4/5
183/183 [==============================] - 93s 507ms/step - loss: 0.5454 - accuracy: 0.9712 - val_loss: 0.5671 - val_accuracy: 0.9569
Epoch 5/5
183/183 [==============================] - 93s 508ms/step - loss: 0.5296 - accuracy: 0.9767 - val_loss: 0.5607 - val_accuracy: 0.9681
plt.figure()
plt.ylabel("Loss (training and validation)")
plt.xlabel("Training Steps")
plt.ylim([0,2])
plt.plot(hist["loss"])
plt.plot(hist["val_loss"])

plt.figure()
plt.ylabel("Accuracy (training and validation)")
plt.xlabel("Training Steps")
plt.ylim([0,1])
plt.plot(hist["accuracy"])
plt.plot(hist["val_accuracy"])
[<matplotlib.lines.Line2D at 0x7f212179b150>]

png

png

Pruebe el modelo en una imagen de los datos de validación:

x, y = next(iter(val_ds))
image = x[0, :, :, :]
true_index = np.argmax(y[0])
plt.imshow(image)
plt.axis('off')
plt.show()

# Expand the validation image to (1, 224, 224, 3) before predicting the label
prediction_scores = model.predict(np.expand_dims(image, axis=0))
predicted_index = np.argmax(prediction_scores)
print("True label: " + class_names[true_index])
print("Predicted label: " + class_names[predicted_index])

png

True label: sunflowers
Predicted label: sunflowers

Finalmente, el modelo entrenado se puede guardar para implementarlo en TF Serving o TFLite (en dispositivos móviles) de la siguiente manera.

saved_model_path = f"/tmp/saved_flowers_model_{model_name}"
tf.saved_model.save(model, saved_model_path)
2021-10-16 11:22:37.251425: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as restored_function_body, restored_function_body, restored_function_body, restored_function_body, restored_function_body while saving (showing 5 of 3985). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets
INFO:tensorflow:Assets written to: /tmp/saved_flowers_model_efficientnetv2-xl-21k/assets

Opcional: implementación en TensorFlow Lite

TensorFlow Lite le permite implementar modelos TensorFlow a los dispositivos móviles y la IO. El código siguiente muestra cómo convertir el modelo entrenado para TFLite y aplicar herramientas de post-formación de la TensorFlow modelo de optimización Toolkit . Finalmente, lo ejecuta en el intérprete de TFLite para examinar la calidad resultante

  • La conversión sin optimización proporciona los mismos resultados que antes (hasta el error de redondeo).
  • La conversión con optimización sin ningún dato cuantifica los pesos del modelo a 8 bits, pero la inferencia aún utiliza el cálculo de punto flotante para las activaciones de la red neuronal. Esto reduce el tamaño del modelo casi en un factor de 4 y mejora la latencia de la CPU en los dispositivos móviles.
  • Además, el cálculo de las activaciones de la red neuronal también se puede cuantificar en números enteros de 8 bits si se proporciona un pequeño conjunto de datos de referencia para calibrar el rango de cuantificación. En un dispositivo móvil, esto acelera aún más la inferencia y hace posible la ejecución en aceleradores como EdgeTPU.

Configuración de optimización

2021-10-16 11:23:45.870533: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-16 11:23:45.870583: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
2021-10-16 11:23:45.870589: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:360] Ignored change_concat_input_ranges.
Wrote TFLite model of 826155352 bytes.
interpreter = tf.lite.Interpreter(model_content=lite_model_content)
# This little helper wraps the TFLite Interpreter as a numpy-to-numpy function.
def lite_model(images):
  interpreter.allocate_tensors()
  interpreter.set_tensor(interpreter.get_input_details()[0]['index'], images)
  interpreter.invoke()
  return interpreter.get_tensor(interpreter.get_output_details()[0]['index'])
num_eval_examples = 50 
eval_dataset = ((image, label)  # TFLite expects batch size 1.
                for batch in train_ds
                for (image, label) in zip(*batch))
count = 0
count_lite_tf_agree = 0
count_lite_correct = 0
for image, label in eval_dataset:
  probs_lite = lite_model(image[None, ...])[0]
  probs_tf = model(image[None, ...]).numpy()[0]
  y_lite = np.argmax(probs_lite)
  y_tf = np.argmax(probs_tf)
  y_true = np.argmax(label)
  count +=1
  if y_lite == y_tf: count_lite_tf_agree += 1
  if y_lite == y_true: count_lite_correct += 1
  if count >= num_eval_examples: break
print("TFLite model agrees with original model on %d of %d examples (%g%%)." %
      (count_lite_tf_agree, count, 100.0 * count_lite_tf_agree / count))
print("TFLite model is accurate on %d of %d examples (%g%%)." %
      (count_lite_correct, count, 100.0 * count_lite_correct / count))
TFLite model agrees with original model on 50 of 50 examples (100%).
TFLite model is accurate on 49 of 50 examples (98%).