Processe dados de entrada e saída com a Biblioteca de suporte do TensorFlow Lite

Mantenha tudo organizado com as coleções Salve e categorize o conteúdo com base nas suas preferências.

Os desenvolvedores de aplicativos móveis normalmente interagem com objetos tipados, como bitmaps ou primitivos, como inteiros. No entanto, a API do interpretador TensorFlow Lite que executa o modelo de aprendizado de máquina no dispositivo usa tensores na forma de ByteBuffer, que pode ser difícil de depurar e manipular. A Biblioteca de suporte do TensorFlow Lite para Android foi projetada para ajudar a processar a entrada e a saída dos modelos do TensorFlow Lite e facilitar o uso do interpretador do TensorFlow Lite.

Começando

Importar dependência do Gradle e outras configurações

Copie o arquivo de modelo .tflite para o diretório assets do módulo Android onde o modelo será executado. Especifique que o arquivo não deve ser compactado e adicione a biblioteca do TensorFlow Lite ao arquivo build.gradle do módulo:

android {
    // Other settings

    // Specify tflite file should not be compressed for the app apk
    aaptOptions {
        noCompress "tflite"
    }

}

dependencies {
    // Other dependencies

    // Import tflite dependencies
    implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly-SNAPSHOT'
    // The GPU delegate library is optional. Depend on it as needed.
    implementation 'org.tensorflow:tensorflow-lite-gpu:0.0.0-nightly-SNAPSHOT'
    implementation 'org.tensorflow:tensorflow-lite-support:0.0.0-nightly-SNAPSHOT'
}

Explore o AAR da Biblioteca de suporte do TensorFlow Lite hospedado no MavenCentral para diferentes versões da Biblioteca de suporte.

Manipulação e conversão básica de imagens

A Biblioteca de suporte do TensorFlow Lite tem um conjunto de métodos básicos de manipulação de imagens, como recortar e redimensionar. Para usá-lo, crie um ImagePreprocessor e adicione as operações necessárias. Para converter a imagem no formato de tensor exigido pelo interpretador do TensorFlow Lite, crie um TensorImage para ser usado como entrada:

import org.tensorflow.lite.DataType;
import org.tensorflow.lite.support.image.ImageProcessor;
import org.tensorflow.lite.support.image.TensorImage;
import org.tensorflow.lite.support.image.ops.ResizeOp;

// Initialization code
// Create an ImageProcessor with all ops required. For more ops, please
// refer to the ImageProcessor Architecture section in this README.
ImageProcessor imageProcessor =
    new ImageProcessor.Builder()
        .add(new ResizeOp(224, 224, ResizeOp.ResizeMethod.BILINEAR))
        .build();

// Create a TensorImage object. This creates the tensor of the corresponding
// tensor type (uint8 in this case) that the TensorFlow Lite interpreter needs.
TensorImage tensorImage = new TensorImage(DataType.UINT8);

// Analysis code for every frame
// Preprocess the image
tensorImage.load(bitmap);
tensorImage = imageProcessor.process(tensorImage);

DataType de um tensor pode ser lido por meio da biblioteca do extrator de metadados , bem como outras informações do modelo.

Processamento básico de dados de áudio

A Biblioteca de suporte do TensorFlow Lite também define uma classe TensorAudio que envolve alguns métodos básicos de processamento de dados de áudio. É usado principalmente em conjunto com AudioRecord e captura amostras de áudio em um buffer de anel.

import android.media.AudioRecord;
import org.tensorflow.lite.support.audio.TensorAudio;

// Create an `AudioRecord` instance.
AudioRecord record = AudioRecord(...)

// Create a `TensorAudio` object from Android AudioFormat.
TensorAudio tensorAudio = new TensorAudio(record.getFormat(), size)

// Load all audio samples available in the AudioRecord without blocking.
tensorAudio.load(record)

// Get the `TensorBuffer` for inference.
TensorBuffer buffer = tensorAudio.getTensorBuffer()

Crie objetos de saída e execute o modelo

Antes de executar o modelo, precisamos criar os objetos container que irão armazenar o resultado:

import org.tensorflow.lite.DataType;
import org.tensorflow.lite.support.tensorbuffer.TensorBuffer;

// Create a container for the result and specify that this is a quantized model.
// Hence, the 'DataType' is defined as UINT8 (8-bit unsigned integer)
TensorBuffer probabilityBuffer =
    TensorBuffer.createFixedSize(new int[]{1, 1001}, DataType.UINT8);

Carregando o modelo e executando a inferência:

import java.nio.MappedByteBuffer;
import org.tensorflow.lite.InterpreterFactory;
import org.tensorflow.lite.InterpreterApi;

// Initialise the model
try{
    MappedByteBuffer tfliteModel
        = FileUtil.loadMappedFile(activity,
            "mobilenet_v1_1.0_224_quant.tflite");
    InterpreterApi tflite = new InterpreterFactory().create(
        tfliteModel, new InterpreterApi.Options());
} catch (IOException e){
    Log.e("tfliteSupport", "Error reading model", e);
}

// Running inference
if(null != tflite) {
    tflite.run(tImage.getBuffer(), probabilityBuffer.getBuffer());
}

Acessando o resultado

Os desenvolvedores podem acessar a saída diretamente por meio de probabilityBuffer.getFloatArray() . Se o modelo produzir uma saída quantizada, lembre-se de converter o resultado. Para o modelo quantizado MobileNet, o desenvolvedor precisa dividir cada valor de saída por 255 para obter a probabilidade variando de 0 (menos provável) a 1 (mais provável) para cada categoria.

Opcional: mapeando resultados para rótulos

Os desenvolvedores também podem mapear opcionalmente os resultados para rótulos. Primeiro, copie o arquivo de texto contendo os rótulos no diretório de ativos do módulo. Em seguida, carregue o arquivo de rótulo usando o seguinte código:

import org.tensorflow.lite.support.common.FileUtil;

final String ASSOCIATED_AXIS_LABELS = "labels.txt";
List<String> associatedAxisLabels = null;

try {
    associatedAxisLabels = FileUtil.loadLabels(this, ASSOCIATED_AXIS_LABELS);
} catch (IOException e) {
    Log.e("tfliteSupport", "Error reading label file", e);
}

O snippet a seguir demonstra como associar as probabilidades a rótulos de categoria:

import java.util.Map;
import org.tensorflow.lite.support.common.TensorProcessor;
import org.tensorflow.lite.support.common.ops.NormalizeOp;
import org.tensorflow.lite.support.label.TensorLabel;

// Post-processor which dequantize the result
TensorProcessor probabilityProcessor =
    new TensorProcessor.Builder().add(new NormalizeOp(0, 255)).build();

if (null != associatedAxisLabels) {
    // Map of labels and their corresponding probability
    TensorLabel labels = new TensorLabel(associatedAxisLabels,
        probabilityProcessor.process(probabilityBuffer));

    // Create a map to access the result based on label
    Map<String, Float> floatMap = labels.getMapWithFloatValue();
}

Cobertura atual do caso de uso

A versão atual da Biblioteca de suporte do TensorFlow Lite abrange:

  • tipos de dados comuns (float, uint8, imagens, áudio e array desses objetos) como entradas e saídas de modelos tflite.
  • operações básicas de imagem (cortar imagem, redimensionar e girar).
  • normalização e quantização
  • arquivo utils

Versões futuras melhorarão o suporte para aplicativos relacionados a texto.

Arquitetura do Processador de Imagens

O design do ImageProcessor permitiu que as operações de manipulação da imagem fossem definidas antecipadamente e otimizadas durante o processo de construção. O ImageProcessor atualmente oferece suporte a três operações básicas de pré-processamento, conforme descrito nos três comentários no trecho de código abaixo:

import org.tensorflow.lite.support.common.ops.NormalizeOp;
import org.tensorflow.lite.support.common.ops.QuantizeOp;
import org.tensorflow.lite.support.image.ops.ResizeOp;
import org.tensorflow.lite.support.image.ops.ResizeWithCropOrPadOp;
import org.tensorflow.lite.support.image.ops.Rot90Op;

int width = bitmap.getWidth();
int height = bitmap.getHeight();

int size = height > width ? width : height;

ImageProcessor imageProcessor =
    new ImageProcessor.Builder()
        // Center crop the image to the largest square possible
        .add(new ResizeWithCropOrPadOp(size, size))
        // Resize using Bilinear or Nearest neighbour
        .add(new ResizeOp(224, 224, ResizeOp.ResizeMethod.BILINEAR));
        // Rotation counter-clockwise in 90 degree increments
        .add(new Rot90Op(rotateDegrees / 90))
        .add(new NormalizeOp(127.5, 127.5))
        .add(new QuantizeOp(128.0, 1/128.0))
        .build();

Veja mais detalhes aqui sobre normalização e quantização.

O objetivo final da biblioteca de suporte é oferecer suporte a todas as transformações tf.image . Isso significa que a transformação será a mesma do TensorFlow e a implementação será independente do sistema operacional.

Os desenvolvedores também podem criar processadores personalizados. É importante nestes casos estar alinhado com o processo de treinamento - ou seja, o mesmo pré-processamento deve ser aplicado tanto ao treinamento quanto à inferência para aumentar a reprodutibilidade.

Quantização

Ao iniciar objetos de entrada ou saída, como TensorImage ou TensorBuffer , você precisa especificar seus tipos como DataType.UINT8 ou DataType.FLOAT32 .

TensorImage tensorImage = new TensorImage(DataType.UINT8);
TensorBuffer probabilityBuffer =
    TensorBuffer.createFixedSize(new int[]{1, 1001}, DataType.UINT8);

O TensorProcessor pode ser usado para quantizar tensores de entrada ou desquantizar tensores de saída. Por exemplo, ao processar uma saída quantizada TensorBuffer , o desenvolvedor pode usar DequantizeOp para dequantizar o resultado para uma probabilidade de ponto flutuante entre 0 e 1:

import org.tensorflow.lite.support.common.TensorProcessor;

// Post-processor which dequantize the result
TensorProcessor probabilityProcessor =
    new TensorProcessor.Builder().add(new DequantizeOp(0, 1/255.0)).build();
TensorBuffer dequantizedBuffer = probabilityProcessor.process(probabilityBuffer);

Os parâmetros de quantização de um tensor podem ser lidos através da biblioteca extratora de metadados .