День сообщества ML - 9 ноября! Присоединяйтесь к нам для обновления от TensorFlow, JAX, и многое другое Подробнее

Посттренировочное квантование float16

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть исходный код на GitHub Скачать блокнот

Обзор

TensorFlow Lite теперь поддерживает преобразование весов значений с плавающей точкой 16-разрядных во время преобразования модели из плоского TensorFlow в формате буфера TensorFlow Lite в. Это приводит к уменьшению размера модели в 2 раза. Некоторое оборудование, например графические процессоры, может выполнять собственные вычисления в этой арифметике с пониженной точностью, обеспечивая ускорение по сравнению с традиционным выполнением операций с плавающей запятой. Делегат Tensorflow Lite GPU можно настроить для работы таким образом. Однако модель, преобразованная в веса float16, все еще может работать на ЦП без дополнительных изменений: веса float16 повышаются до float32 до первого вывода. Это позволяет значительно уменьшить размер модели в обмен на минимальное влияние на задержку и точность.

В этом руководстве вы обучаете модель MNIST с нуля, проверяете ее точность в TensorFlow, а затем конвертируете модель в плоский буфер Tensorflow Lite с квантованием float16. Наконец, проверьте точность преобразованной модели и сравните ее с исходной моделью float32.

Постройте модель MNIST

Настраивать

import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)

import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib
tf.float16
tf.float16

Обучить и экспортировать модель

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.fit(
  train_images,
  train_labels,
  epochs=1,
  validation_data=(test_images, test_labels)
)
1875/1875 [==============================] - 6s 2ms/step - loss: 0.2770 - accuracy: 0.9225 - val_loss: 0.1200 - val_accuracy: 0.9663
<keras.callbacks.History at 0x7f1974363510>

Например, вы обучили модель всего за одну эпоху, поэтому она обучается только с точностью ~ 96%.

Преобразование в модель TensorFlow Lite

Использование Python TFLiteConverter , теперь вы можете конвертировать обученную модель в модель TensorFlow Lite.

Теперь загрузите модель с помощью TFLiteConverter :

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
2021-10-07 13:22:16.097817: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tmpzieny211/assets
2021-10-07 13:22:16.527740: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:22:16.527787: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Написать его к .tflite файла:

tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)
84500

Для того, чтобы вместо квантование модели в float16 на экспорте, сначала установите optimizations флаг для использования по умолчанию оптимизаций. Затем укажите, что float16 является поддерживаемым типом на целевой платформе:

converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.float16]

Наконец, конвертируйте модель как обычно. Обратите внимание: по умолчанию преобразованная модель по-прежнему будет использовать ввод и вывод с плавающей запятой для удобства вызова.

tflite_fp16_model = converter.convert()
tflite_model_fp16_file = tflite_models_dir/"mnist_model_quant_f16.tflite"
tflite_model_fp16_file.write_bytes(tflite_fp16_model)
INFO:tensorflow:Assets written to: /tmp/tmpaq9936o3/assets
INFO:tensorflow:Assets written to: /tmp/tmpaq9936o3/assets
2021-10-07 13:22:17.141795: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:22:17.141829: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
44432

Обратите внимание, что полученный файл приблизительно 1/2 размера.

ls -lh {tflite_models_dir}
total 215M
-rw-rw-r-- 1 kbuilder kbuilder  83K Oct  7 13:22 mnist_model.tflite
-rw-rw-r-- 1 kbuilder kbuilder  24K Oct  7 13:19 mnist_model_quant.tflite
-rw-rw-r-- 1 kbuilder kbuilder  25K Oct  7 13:21 mnist_model_quant_16x8.tflite
-rw-rw-r-- 1 kbuilder kbuilder  44K Oct  7 13:22 mnist_model_quant_f16.tflite
-rw-rw-r-- 1 kbuilder kbuilder 171M Oct  7 13:20 resnet_v2_101.tflite
-rw-rw-r-- 1 kbuilder kbuilder  45M Oct  7 13:20 resnet_v2_101_quantized.tflite

Запустите модели TensorFlow Lite

Запустите модель TensorFlow Lite с помощью интерпретатора Python TensorFlow Lite.

Загрузите модель в интерпретаторы

interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))
interpreter.allocate_tensors()
interpreter_fp16 = tf.lite.Interpreter(model_path=str(tflite_model_fp16_file))
interpreter_fp16.allocate_tensors()

Протестируйте модели на одном изображении

test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)

input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]

interpreter.set_tensor(input_index, test_image)
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
import matplotlib.pylab as plt

plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
                              predict=str(np.argmax(predictions[0]))))
plt.grid(False)

PNG

test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)

input_index = interpreter_fp16.get_input_details()[0]["index"]
output_index = interpreter_fp16.get_output_details()[0]["index"]

interpreter_fp16.set_tensor(input_index, test_image)
interpreter_fp16.invoke()
predictions = interpreter_fp16.get_tensor(output_index)
plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
                              predict=str(np.argmax(predictions[0]))))
plt.grid(False)

PNG

Оцените модели

# A helper function to evaluate the TF Lite model using "test" dataset.
def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for test_image in test_images:
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  # Compare prediction results with ground truth labels to calculate accuracy.
  accurate_count = 0
  for index in range(len(prediction_digits)):
    if prediction_digits[index] == test_labels[index]:
      accurate_count += 1
  accuracy = accurate_count * 1.0 / len(prediction_digits)

  return accuracy
print(evaluate_model(interpreter))
0.9663

Повторите оценку на квантованной модели float16, чтобы получить:

# NOTE: Colab runs on server CPUs. At the time of writing this, TensorFlow Lite
# doesn't have super optimized server CPU kernels. For this reason this may be
# slower than the above float interpreter. But for mobile CPUs, considerable
# speedup can be observed.
print(evaluate_model(interpreter_fp16))
0.9663

В этом примере вы квантовали модель до float16 без разницы в точности.

Также возможно оценить квантованную модель fp16 на графическом процессоре. Для выполнения всех арифметических операций с сокращенным значениями точности, убедитесь , что для создания TfLiteGPUDelegateOptions структуры в вашем приложении и набор precision_loss_allowed к 1 , как это:

//Prepare GPU delegate.
const TfLiteGpuDelegateOptions options = {
  .metadata = NULL,
  .compile_options = {
    .precision_loss_allowed = 1,  // FP16
    .preferred_gl_object_type = TFLITE_GL_OBJECT_TYPE_FASTEST,
    .dynamic_batch_enabled = 0,   // Not fully functional yet
  },
};

Подробная документация на делегатом TFLite GPU и как использовать его в приложении можно найти здесь