День сообщества ML - 9 ноября! Присоединяйтесь к нам для обновления от TensorFlow, JAX, и многое другое Подробнее

Квантование динамического диапазона после тренировки

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть исходный код на GitHub Скачать блокнот См. Модель TF Hub

Обзор

TensorFlow Lite теперь поддерживает преобразование весов 8 бит точности в рамках преобразования модели из tensorflow graphdefs в плоском формате буфера TensorFlow Lite в. Квантование динамического диапазона позволяет уменьшить размер модели в 4 раза. Кроме того, TFLite поддерживает квантование и деквантование активаций на лету, что позволяет:

  1. Использование квантованных ядер для более быстрой реализации, когда они доступны.
  2. Смешивание ядер с плавающей запятой с квантованными ядрами для разных частей графа.

Активации всегда хранятся с плавающей запятой. Для операций, которые поддерживают квантованные ядра, активации квантуются до 8 битов точности динамически перед обработкой и деквантовываются до точности с плавающей запятой после обработки. В зависимости от преобразуемой модели это может дать ускорение по сравнению с вычислениями с плавающей запятой.

В отличии от квантования осознает обучения , вес квантуется после тренировки и активации квантуются динамически при выводе в этом методе. Следовательно, веса модели не переобучаются, чтобы компенсировать ошибки, вызванные квантованием. Важно проверить точность квантованной модели, чтобы убедиться, что ухудшение приемлемо.

Это руководство обучает модель MNIST с нуля, проверяет ее точность в TensorFlow, а затем преобразует модель в плоский буфер Tensorflow Lite с квантованием динамического диапазона. Наконец, он проверяет точность преобразованной модели и сравнивает ее с исходной моделью с плавающей запятой.

Постройте модель MNIST

Настраивать

import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)

import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib

Обучите модель TensorFlow

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
model.fit(
  train_images,
  train_labels,
  epochs=1,
  validation_data=(test_images, test_labels)
)
1875/1875 [==============================] - 6s 2ms/step - loss: 0.2710 - accuracy: 0.9247 - val_loss: 0.1184 - val_accuracy: 0.9656
<keras.callbacks.History at 0x7fcf44eda750>

Например, поскольку вы обучили модель только для одной эпохи, она обучается только с точностью ~ 96%.

Преобразование в модель TensorFlow Lite

Использование Python TFLiteConverter , теперь вы можете конвертировать обученную модель в модель TensorFlow Lite.

Теперь загрузите модель с помощью TFLiteConverter :

converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
2021-10-07 13:19:43.048455: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tmpy9x9fsuo/assets
2021-10-07 13:19:43.469984: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:19:43.470019: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Запишите это в tflite-файл:

tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)
84500

Для квантования модели на экспорте, установите optimizations флаг для оптимизации размера:

converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
tflite_model_quant_file = tflite_models_dir/"mnist_model_quant.tflite"
tflite_model_quant_file.write_bytes(tflite_quant_model)
INFO:tensorflow:Assets written to: /tmp/tmpaal649ps/assets
INFO:tensorflow:Assets written to: /tmp/tmpaal649ps/assets
2021-10-07 13:19:44.062438: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:19:44.062470: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
23904

Обратите внимание , как результирующий файл, составляет примерно 1/4 размера.

ls -lh {tflite_models_dir}
total 108K
-rw-rw-r-- 1 kbuilder kbuilder 83K Oct  7 13:19 mnist_model.tflite
-rw-rw-r-- 1 kbuilder kbuilder 24K Oct  7 13:19 mnist_model_quant.tflite

Запустите модели TFLite

Запустите модель TensorFlow Lite с помощью интерпретатора Python TensorFlow Lite.

Загрузите модель в интерпретатор

interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))
interpreter.allocate_tensors()
interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_quant_file))
interpreter_quant.allocate_tensors()

Протестируйте модель на одном изображении

test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)

input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]

interpreter.set_tensor(input_index, test_image)
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
import matplotlib.pylab as plt

plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
                              predict=str(np.argmax(predictions[0]))))
plt.grid(False)

PNG

Оцените модели

# A helper function to evaluate the TF Lite model using "test" dataset.
def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on every image in the "test" dataset.
  prediction_digits = []
  for test_image in test_images:
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  # Compare prediction results with ground truth labels to calculate accuracy.
  accurate_count = 0
  for index in range(len(prediction_digits)):
    if prediction_digits[index] == test_labels[index]:
      accurate_count += 1
  accuracy = accurate_count * 1.0 / len(prediction_digits)

  return accuracy
print(evaluate_model(interpreter))
0.9656

Повторите оценку на квантованной модели динамического диапазона, чтобы получить:

print(evaluate_model(interpreter_quant))
0.9653

В этом примере сжатая модель не имеет разницы в точности.

Оптимизация существующей модели

Resnet с уровнями предварительной активации (Resnet-v2) широко используются для приложений технического зрения. Предварительно подготовленный замороженный график для RESNET-v2-101 доступен на Tensorflow Hub .

Вы можете преобразовать замороженный график в плоский буфер TensorFLow Lite с квантованием:

import tensorflow_hub as hub

resnet_v2_101 = tf.keras.Sequential([
  keras.layers.InputLayer(input_shape=(224, 224, 3)),
  hub.KerasLayer("https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4")
])

converter = tf.lite.TFLiteConverter.from_keras_model(resnet_v2_101)
# Convert to TF Lite without quantization
resnet_tflite_file = tflite_models_dir/"resnet_v2_101.tflite"
resnet_tflite_file.write_bytes(converter.convert())
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmpoxp4nojo/assets
INFO:tensorflow:Assets written to: /tmp/tmpoxp4nojo/assets
2021-10-07 13:20:11.303238: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:20:11.303297: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
178509352
# Convert to TF Lite with quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
resnet_quantized_tflite_file = tflite_models_dir/"resnet_v2_101_quantized.tflite"
resnet_quantized_tflite_file.write_bytes(converter.convert())
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmp2ne8e7l6/assets
INFO:tensorflow:Assets written to: /tmp/tmp2ne8e7l6/assets
2021-10-07 13:20:26.918919: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-10-07 13:20:26.918972: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
46256864
ls -lh {tflite_models_dir}/*.tflite
-rw-rw-r-- 1 kbuilder kbuilder  83K Oct  7 13:19 /tmp/mnist_tflite_models/mnist_model.tflite
-rw-rw-r-- 1 kbuilder kbuilder  24K Oct  7 13:19 /tmp/mnist_tflite_models/mnist_model_quant.tflite
-rw-rw-r-- 1 kbuilder kbuilder 171M Oct  7 13:20 /tmp/mnist_tflite_models/resnet_v2_101.tflite
-rw-rw-r-- 1 kbuilder kbuilder  45M Oct  7 13:20 /tmp/mnist_tflite_models/resnet_v2_101_quantized.tflite

Размер модели уменьшен со 171 МБ до 43 МБ. Точность этой модели на imagenet может быть оценена с использованием сценариев , предусмотренные точностью измерений TFLite .

Точность оптимизированной модели top-1 составляет 76,8, как и модель с плавающей запятой.