Transformasikan data input dan latih model dengan pipeline TFX.
Dalam tutorial berbasis notebook ini, kita akan membuat dan menjalankan pipeline TFX untuk menyerap data input mentah dan memprosesnya terlebih dahulu dengan tepat untuk pelatihan ML. Notebook ini didasarkan pada pipa TFX kami dibangun pada validasi data menggunakan TFX Pipeline dan TensorFlow Validasi Data Tutorial . Jika Anda belum membacanya, Anda harus membacanya sebelum melanjutkan dengan buku catatan ini.
Anda dapat meningkatkan kualitas prediktif data Anda dan/atau mengurangi dimensi dengan rekayasa fitur. Salah satu keuntungan menggunakan TFX adalah Anda akan menulis kode transformasi Anda satu kali, dan transformasi yang dihasilkan akan konsisten antara pelatihan dan penayangan untuk menghindari kemiringan pelatihan/penyajian.
Kami akan menambahkan Transform
komponen untuk pipa. Komponen Transform diimplementasikan menggunakan tf.transform perpustakaan.
Silakan lihat Memahami TFX Pipa untuk mempelajari lebih lanjut tentang berbagai konsep di TFX.
Mempersiapkan
Pertama-tama kita perlu menginstal paket TFX Python dan mengunduh dataset yang akan kita gunakan untuk model kita.
Tingkatkan Pip
Untuk menghindari mengupgrade Pip dalam sistem saat berjalan secara lokal, periksa untuk memastikan bahwa kami berjalan di Colab. Sistem lokal tentu saja dapat ditingkatkan secara terpisah.
try:
import colab
!pip install --upgrade pip
except:
pass
Instal TFX
pip install -U tfx
Apakah Anda me-restart runtime?
Jika Anda menggunakan Google Colab, pertama kali menjalankan sel di atas, Anda harus memulai ulang runtime dengan mengeklik tombol "RESTART RUNTIME" di atas atau menggunakan menu "Runtime > Restart runtime ...". Ini karena cara Colab memuat paket.
Periksa versi TensorFlow dan TFX.
import tensorflow as tf
print('TensorFlow version: {}'.format(tf.__version__))
from tfx import v1 as tfx
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2 TFX version: 1.4.0
Mengatur variabel
Ada beberapa variabel yang digunakan untuk mendefinisikan sebuah pipeline. Anda dapat menyesuaikan variabel-variabel ini sesuai keinginan. Secara default semua output dari pipa akan dihasilkan di bawah direktori saat ini.
import os
PIPELINE_NAME = "penguin-transform"
# Output directory to store artifacts generated from the pipeline.
PIPELINE_ROOT = os.path.join('pipelines', PIPELINE_NAME)
# Path to a SQLite DB file to use as an MLMD storage.
METADATA_PATH = os.path.join('metadata', PIPELINE_NAME, 'metadata.db')
# Output directory where created models from the pipeline will be exported.
SERVING_MODEL_DIR = os.path.join('serving_model', PIPELINE_NAME)
from absl import logging
logging.set_verbosity(logging.INFO) # Set default logging level.
Siapkan contoh data
Kami akan mengunduh contoh kumpulan data untuk digunakan dalam saluran TFX kami. Dataset kita gunakan adalah Palmer Penguins dataset .
Namun, tidak seperti tutorial sebelumnya yang menggunakan sebuah dataset yang sudah preprocessed, kita akan menggunakan baku Palmer Penguins dataset.
Karena komponen TFX ExampleGen membaca input dari direktori, kita perlu membuat direktori dan menyalin dataset ke dalamnya.
import urllib.request
import tempfile
DATA_ROOT = tempfile.mkdtemp(prefix='tfx-data') # Create a temporary directory.
_data_path = 'https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins_size.csv'
_data_filepath = os.path.join(DATA_ROOT, "data.csv")
urllib.request.urlretrieve(_data_path, _data_filepath)
('/tmp/tfx-dataacmxfq9f/data.csv', <http.client.HTTPMessage at 0x7f5b0ab1bf10>)
Lihat sekilas seperti apa tampilan data mentahnya.
head {_data_filepath}
species,island,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g,sex Adelie,Torgersen,39.1,18.7,181,3750,MALE Adelie,Torgersen,39.5,17.4,186,3800,FEMALE Adelie,Torgersen,40.3,18,195,3250,FEMALE Adelie,Torgersen,NA,NA,NA,NA,NA Adelie,Torgersen,36.7,19.3,193,3450,FEMALE Adelie,Torgersen,39.3,20.6,190,3650,MALE Adelie,Torgersen,38.9,17.8,181,3625,FEMALE Adelie,Torgersen,39.2,19.6,195,4675,MALE Adelie,Torgersen,34.1,18.1,193,3475,NA
Ada beberapa entri dengan nilai-nilai yang direpresentasikan sebagai hilang NA
. Kami hanya akan menghapus entri tersebut dalam tutorial ini.
sed -i '/\bNA\b/d' {_data_filepath}
head {_data_filepath}
species,island,culmen_length_mm,culmen_depth_mm,flipper_length_mm,body_mass_g,sex Adelie,Torgersen,39.1,18.7,181,3750,MALE Adelie,Torgersen,39.5,17.4,186,3800,FEMALE Adelie,Torgersen,40.3,18,195,3250,FEMALE Adelie,Torgersen,36.7,19.3,193,3450,FEMALE Adelie,Torgersen,39.3,20.6,190,3650,MALE Adelie,Torgersen,38.9,17.8,181,3625,FEMALE Adelie,Torgersen,39.2,19.6,195,4675,MALE Adelie,Torgersen,41.1,17.6,182,3200,FEMALE Adelie,Torgersen,38.6,21.2,191,3800,MALE
Anda harus dapat melihat tujuh fitur yang menggambarkan penguin. Kami akan menggunakan kumpulan fitur yang sama seperti tutorial sebelumnya - 'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g' - dan akan memprediksi 'spesies' penguin.
Satu-satunya perbedaan adalah bahwa data input tidak diproses sebelumnya. Perhatikan bahwa kami tidak akan menggunakan fitur lain seperti 'pulau' atau 'seks' dalam tutorial ini.
Siapkan file skema
Seperti dijelaskan dalam validasi data menggunakan TFX Pipeline dan TensorFlow Validasi Data Tutorial , kita perlu file skema untuk dataset. Karena dataset berbeda dari tutorial sebelumnya, kita perlu membuatnya kembali. Dalam tutorial ini, kita akan melewatkan langkah-langkah tersebut dan hanya menggunakan file skema yang telah disiapkan.
import shutil
SCHEMA_PATH = 'schema'
_schema_uri = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/penguin/schema/raw/schema.pbtxt'
_schema_filename = 'schema.pbtxt'
_schema_filepath = os.path.join(SCHEMA_PATH, _schema_filename)
os.makedirs(SCHEMA_PATH, exist_ok=True)
urllib.request.urlretrieve(_schema_uri, _schema_filepath)
('schema/schema.pbtxt', <http.client.HTTPMessage at 0x7f5b0ab20f50>)
File skema ini dibuat dengan alur yang sama seperti pada tutorial sebelumnya tanpa perubahan manual.
Buat saluran pipa
Pipa TFX ditentukan menggunakan API Python. Kami akan menambahkan Transform
komponen ke pipa kita buat pada tutorial Validasi data .
Sebuah komponen Transform membutuhkan input data dari ExampleGen
komponen dan skema dari SchemaGen
komponen, dan menghasilkan "mengubah grafik". Output akan digunakan dalam Trainer
komponen. Transform secara opsional dapat menghasilkan "data yang diubah" sebagai tambahan, yang merupakan data yang terwujud setelah transformasi. Namun, kami akan mengubah data selama pelatihan dalam tutorial ini tanpa materialisasi dari data yang ditransformasikan antara.
Satu hal yang perlu dicatat adalah bahwa kita perlu mendefinisikan fungsi Python, preprocessing_fn
untuk menggambarkan bagaimana data input harus diubah. Ini mirip dengan komponen Trainer yang juga memerlukan kode pengguna untuk definisi model.
Tulis kode pra-pemrosesan dan pelatihan
Kita perlu mendefinisikan dua fungsi Python. Satu untuk Transform dan satu untuk Trainer.
prapemrosesan_fn
Komponen Transform akan menemukan fungsi bernama preprocessing_fn
dalam file modul yang diberikan seperti yang kita lakukan untuk Trainer
komponen. Anda juga dapat menentukan fungsi tertentu menggunakan preprocessing_fn
parameter dari komponen Transform.
Dalam contoh ini, kita akan melakukan dua jenis transformasi. Untuk fitur numerik terus menerus seperti culmen_length_mm
dan body_mass_g
, kami akan menormalkan nilai-nilai ini menggunakan tft.scale_to_z_score fungsi. Untuk fitur label, kita perlu mengubah label string menjadi nilai indeks numerik. Kami akan menggunakan tf.lookup.StaticHashTable
untuk konversi.
Untuk mengidentifikasi bidang diubah dengan mudah, kita tambahkan sebuah _xf
akhiran untuk nama fitur tersebut berubah.
run_fn
Modelnya sendiri hampir sama seperti pada tutorial sebelumnya, namun kali ini kita akan mentransformasikan data input menggunakan grafik transform dari komponen Transform.
Satu lagi perbedaan penting dibandingkan dengan tutorial sebelumnya adalah sekarang kita mengekspor model untuk penyajian yang tidak hanya mencakup grafik komputasi model, tetapi juga grafik transformasi untuk prapemrosesan, yang dihasilkan dalam komponen Transform. Kita perlu mendefinisikan fungsi terpisah yang akan digunakan untuk melayani permintaan yang masuk. Anda dapat melihat bahwa fungsi yang sama _apply_preprocessing
digunakan untuk kedua data pelatihan dan permintaan yang melayani.
_module_file = 'penguin_utils.py'
%%writefile {_module_file}
from typing import List, Text
from absl import logging
import tensorflow as tf
from tensorflow import keras
from tensorflow_metadata.proto.v0 import schema_pb2
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils
from tfx import v1 as tfx
from tfx_bsl.public import tfxio
# Specify features that we will use.
_FEATURE_KEYS = [
'culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g'
]
_LABEL_KEY = 'species'
_TRAIN_BATCH_SIZE = 20
_EVAL_BATCH_SIZE = 10
# NEW: TFX Transform will call this function.
def preprocessing_fn(inputs):
"""tf.transform's callback function for preprocessing inputs.
Args:
inputs: map from feature keys to raw not-yet-transformed features.
Returns:
Map from string feature key to transformed feature.
"""
outputs = {}
# Uses features defined in _FEATURE_KEYS only.
for key in _FEATURE_KEYS:
# tft.scale_to_z_score computes the mean and variance of the given feature
# and scales the output based on the result.
outputs[key] = tft.scale_to_z_score(inputs[key])
# For the label column we provide the mapping from string to index.
# We could instead use `tft.compute_and_apply_vocabulary()` in order to
# compute the vocabulary dynamically and perform a lookup.
# Since in this example there are only 3 possible values, we use a hard-coded
# table for simplicity.
table_keys = ['Adelie', 'Chinstrap', 'Gentoo']
initializer = tf.lookup.KeyValueTensorInitializer(
keys=table_keys,
values=tf.cast(tf.range(len(table_keys)), tf.int64),
key_dtype=tf.string,
value_dtype=tf.int64)
table = tf.lookup.StaticHashTable(initializer, default_value=-1)
outputs[_LABEL_KEY] = table.lookup(inputs[_LABEL_KEY])
return outputs
# NEW: This function will apply the same transform operation to training data
# and serving requests.
def _apply_preprocessing(raw_features, tft_layer):
transformed_features = tft_layer(raw_features)
if _LABEL_KEY in raw_features:
transformed_label = transformed_features.pop(_LABEL_KEY)
return transformed_features, transformed_label
else:
return transformed_features, None
# NEW: This function will create a handler function which gets a serialized
# tf.example, preprocess and run an inference with it.
def _get_serve_tf_examples_fn(model, tf_transform_output):
# We must save the tft_layer to the model to ensure its assets are kept and
# tracked.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function(input_signature=[
tf.TensorSpec(shape=[None], dtype=tf.string, name='examples')
])
def serve_tf_examples_fn(serialized_tf_examples):
# Expected input is a string which is serialized tf.Example format.
feature_spec = tf_transform_output.raw_feature_spec()
# Because input schema includes unnecessary fields like 'species' and
# 'island', we filter feature_spec to include required keys only.
required_feature_spec = {
k: v for k, v in feature_spec.items() if k in _FEATURE_KEYS
}
parsed_features = tf.io.parse_example(serialized_tf_examples,
required_feature_spec)
# Preprocess parsed input with transform operation defined in
# preprocessing_fn().
transformed_features, _ = _apply_preprocessing(parsed_features,
model.tft_layer)
# Run inference with ML model.
return model(transformed_features)
return serve_tf_examples_fn
def _input_fn(file_pattern: List[Text],
data_accessor: tfx.components.DataAccessor,
tf_transform_output: tft.TFTransformOutput,
batch_size: int = 200) -> tf.data.Dataset:
"""Generates features and label for tuning/training.
Args:
file_pattern: List of paths or patterns of input tfrecord files.
data_accessor: DataAccessor for converting input to RecordBatch.
tf_transform_output: A TFTransformOutput.
batch_size: representing the number of consecutive elements of returned
dataset to combine in a single batch
Returns:
A dataset that contains (features, indices) tuple where features is a
dictionary of Tensors, and indices is a single Tensor of label indices.
"""
dataset = data_accessor.tf_dataset_factory(
file_pattern,
tfxio.TensorFlowDatasetOptions(batch_size=batch_size),
schema=tf_transform_output.raw_metadata.schema)
transform_layer = tf_transform_output.transform_features_layer()
def apply_transform(raw_features):
return _apply_preprocessing(raw_features, transform_layer)
return dataset.map(apply_transform).repeat()
def _build_keras_model() -> tf.keras.Model:
"""Creates a DNN Keras model for classifying penguin data.
Returns:
A Keras Model.
"""
# The model below is built with Functional API, please refer to
# https://www.tensorflow.org/guide/keras/overview for all API options.
inputs = [
keras.layers.Input(shape=(1,), name=key)
for key in _FEATURE_KEYS
]
d = keras.layers.concatenate(inputs)
for _ in range(2):
d = keras.layers.Dense(8, activation='relu')(d)
outputs = keras.layers.Dense(3)(d)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(
optimizer=keras.optimizers.Adam(1e-2),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.summary(print_fn=logging.info)
return model
# TFX Trainer will call this function.
def run_fn(fn_args: tfx.components.FnArgs):
"""Train the model based on given args.
Args:
fn_args: Holds args used to train the model as name/value pairs.
"""
tf_transform_output = tft.TFTransformOutput(fn_args.transform_output)
train_dataset = _input_fn(
fn_args.train_files,
fn_args.data_accessor,
tf_transform_output,
batch_size=_TRAIN_BATCH_SIZE)
eval_dataset = _input_fn(
fn_args.eval_files,
fn_args.data_accessor,
tf_transform_output,
batch_size=_EVAL_BATCH_SIZE)
model = _build_keras_model()
model.fit(
train_dataset,
steps_per_epoch=fn_args.train_steps,
validation_data=eval_dataset,
validation_steps=fn_args.eval_steps)
# NEW: Save a computation graph including transform layer.
signatures = {
'serving_default': _get_serve_tf_examples_fn(model, tf_transform_output),
}
model.save(fn_args.serving_model_dir, save_format='tf', signatures=signatures)
Writing penguin_utils.py
Sekarang Anda telah menyelesaikan semua langkah persiapan untuk membangun saluran pipa TFX.
Tulis definisi pipa
Kami mendefinisikan fungsi untuk membuat pipa TFX. Sebuah Pipeline
objek merupakan pipa TFX, yang dapat dijalankan menggunakan salah satu sistem pipa orkestrasi yang TFX mendukung.
def _create_pipeline(pipeline_name: str, pipeline_root: str, data_root: str,
schema_path: str, module_file: str, serving_model_dir: str,
metadata_path: str) -> tfx.dsl.Pipeline:
"""Implements the penguin pipeline with TFX."""
# Brings data into the pipeline or otherwise joins/converts training data.
example_gen = tfx.components.CsvExampleGen(input_base=data_root)
# Computes statistics over data for visualization and example validation.
statistics_gen = tfx.components.StatisticsGen(
examples=example_gen.outputs['examples'])
# Import the schema.
schema_importer = tfx.dsl.Importer(
source_uri=schema_path,
artifact_type=tfx.types.standard_artifacts.Schema).with_id(
'schema_importer')
# Performs anomaly detection based on statistics and data schema.
example_validator = tfx.components.ExampleValidator(
statistics=statistics_gen.outputs['statistics'],
schema=schema_importer.outputs['result'])
# NEW: Transforms input data using preprocessing_fn in the 'module_file'.
transform = tfx.components.Transform(
examples=example_gen.outputs['examples'],
schema=schema_importer.outputs['result'],
materialize=False,
module_file=module_file)
# Uses user-provided Python function that trains a model.
trainer = tfx.components.Trainer(
module_file=module_file,
examples=example_gen.outputs['examples'],
# NEW: Pass transform_graph to the trainer.
transform_graph=transform.outputs['transform_graph'],
train_args=tfx.proto.TrainArgs(num_steps=100),
eval_args=tfx.proto.EvalArgs(num_steps=5))
# Pushes the model to a filesystem destination.
pusher = tfx.components.Pusher(
model=trainer.outputs['model'],
push_destination=tfx.proto.PushDestination(
filesystem=tfx.proto.PushDestination.Filesystem(
base_directory=serving_model_dir)))
components = [
example_gen,
statistics_gen,
schema_importer,
example_validator,
transform, # NEW: Transform component was added to the pipeline.
trainer,
pusher,
]
return tfx.dsl.Pipeline(
pipeline_name=pipeline_name,
pipeline_root=pipeline_root,
metadata_connection_config=tfx.orchestration.metadata
.sqlite_metadata_connection_config(metadata_path),
components=components)
Jalankan pipa
Kami akan menggunakan LocalDagRunner
seperti pada tutorial sebelumnya.
tfx.orchestration.LocalDagRunner().run(
_create_pipeline(
pipeline_name=PIPELINE_NAME,
pipeline_root=PIPELINE_ROOT,
data_root=DATA_ROOT,
schema_path=SCHEMA_PATH,
module_file=_module_file,
serving_model_dir=SERVING_MODEL_DIR,
metadata_path=METADATA_PATH))
INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Excluding no splits because exclude_splits is not set. INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_utils.py' (including modules: ['penguin_utils']). INFO:absl:User module package has hash fingerprint version a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp_rl2wpg3/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmps7emqvj6', '--dist-dir', '/tmp/tmpnvanprdd'] /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'; target user module is 'penguin_utils'. INFO:absl:Full user module path is 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/penguin_utils.py' (including modules: ['penguin_utils']). INFO:absl:User module package has hash fingerprint version a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpi9sy085o/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmpugc_ecw_', '--dist-dir', '/tmp/tmpr1xz5bg6'] running bdist_wheel running build running build_py creating build creating build/lib copying penguin_utils.py -> build/lib installing to /tmp/tmps7emqvj6 running install running install_lib copying build/lib/penguin_utils.py -> /tmp/tmps7emqvj6 running install_egg_info running egg_info creating tfx_user_code_Transform.egg-info writing tfx_user_code_Transform.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt' Copying tfx_user_code_Transform.egg-info to /tmp/tmps7emqvj6/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3.7.egg-info running install_scripts creating /tmp/tmps7emqvj6/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL creating '/tmp/tmpnvanprdd/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' and adding '/tmp/tmps7emqvj6' to it adding 'penguin_utils.py' adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/METADATA' adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL' adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/top_level.txt' adding 'tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/RECORD' removing /tmp/tmps7emqvj6 /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools. setuptools.SetuptoolsDeprecationWarning, listing git files failed - pretending there aren't any INFO:absl:Successfully built user code wheel distribution at 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'; target user module is 'penguin_utils'. INFO:absl:Full user module path is 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' INFO:absl:Using deployment config: executor_specs { key: "CsvExampleGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.example_gen.csv_example_gen.executor.Executor" } } } } executor_specs { key: "ExampleValidator" value { python_class_executable_spec { class_path: "tfx.components.example_validator.executor.Executor" } } } executor_specs { key: "Pusher" value { python_class_executable_spec { class_path: "tfx.components.pusher.executor.Executor" } } } executor_specs { key: "StatisticsGen" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.statistics_gen.executor.Executor" } } } } executor_specs { key: "Trainer" value { python_class_executable_spec { class_path: "tfx.components.trainer.executor.GenericExecutor" } } } executor_specs { key: "Transform" value { beam_executable_spec { python_executor_spec { class_path: "tfx.components.transform.executor.Executor" } } } } custom_driver_specs { key: "CsvExampleGen" value { python_class_executable_spec { class_path: "tfx.components.example_gen.driver.FileBasedDriver" } } } metadata_connection_config { sqlite { filename_uri: "metadata/penguin-transform/metadata.db" connection_mode: READWRITE_OPENCREATE } } INFO:absl:Using connection config: sqlite { filename_uri: "metadata/penguin-transform/metadata.db" connection_mode: READWRITE_OPENCREATE } INFO:absl:Component CsvExampleGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-dataacmxfq9f" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" downstream_nodes: "Trainer" downstream_nodes: "Transform" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized running bdist_wheel running build running build_py creating build creating build/lib copying penguin_utils.py -> build/lib installing to /tmp/tmpugc_ecw_ running install running install_lib copying build/lib/penguin_utils.py -> /tmp/tmpugc_ecw_ running install_egg_info running egg_info creating tfx_user_code_Trainer.egg-info writing tfx_user_code_Trainer.egg-info/PKG-INFO writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt' Copying tfx_user_code_Trainer.egg-info to /tmp/tmpugc_ecw_/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3.7.egg-info running install_scripts creating /tmp/tmpugc_ecw_/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL creating '/tmp/tmpr1xz5bg6/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' and adding '/tmp/tmpugc_ecw_' to it adding 'penguin_utils.py' adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/METADATA' adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/WHEEL' adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/top_level.txt' adding 'tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9.dist-info/RECORD' removing /tmp/tmpugc_ecw_ WARNING: Logging before InitGoogleLogging() is written to STDERR I1205 10:21:51.351922 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:21:52.158721 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:21:52.173334 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:21:52.180279 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:select span and version = (0, None) INFO:absl:latest span and version = (0, None) INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 1 I1205 10:21:52.194584 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=1, input_dict={}, output_dict=defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-transform/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}), exec_properties={'output_config': '{\n "split_config": {\n "splits": [\n {\n "hash_buckets": 2,\n "name": "train"\n },\n {\n "hash_buckets": 1,\n "name": "eval"\n }\n ]\n }\n}', 'input_config': '{\n "splits": [\n {\n "name": "single_split",\n "pattern": "*"\n }\n ]\n}', 'output_file_format': 5, 'output_data_format': 6, 'input_base': '/tmp/tfx-dataacmxfq9f', 'span': 0, 'version': None, 'input_fingerprint': 'split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709'}, execution_output_uri='pipelines/penguin-transform/CsvExampleGen/.system/executor_execution/1/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/CsvExampleGen/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/CsvExampleGen/.system/executor_execution/1/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_gen.csv_example_gen.component.CsvExampleGen" } id: "CsvExampleGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } } outputs { outputs { key: "examples" value { artifact_spec { type { name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } } } } } } parameters { parameters { key: "input_base" value { field_value { string_value: "/tmp/tfx-dataacmxfq9f" } } } parameters { key: "input_config" value { field_value { string_value: "{\n \"splits\": [\n {\n \"name\": \"single_split\",\n \"pattern\": \"*\"\n }\n ]\n}" } } } parameters { key: "output_config" value { field_value { string_value: "{\n \"split_config\": {\n \"splits\": [\n {\n \"hash_buckets\": 2,\n \"name\": \"train\"\n },\n {\n \"hash_buckets\": 1,\n \"name\": \"eval\"\n }\n ]\n }\n}" } } } parameters { key: "output_data_format" value { field_value { int_value: 6 } } } parameters { key: "output_file_format" value { field_value { int_value: 5 } } } } downstream_nodes: "StatisticsGen" downstream_nodes: "Trainer" downstream_nodes: "Transform" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') INFO:absl:Generating examples. WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. INFO:absl:Processing input csv data /tmp/tfx-dataacmxfq9f/* to TFExample. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. INFO:absl:Examples generated. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 1 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'examples': [Artifact(artifact: uri: "pipelines/penguin-transform/CsvExampleGen/examples/1" custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}) for execution 1 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component CsvExampleGen is finished. INFO:absl:Component schema_importer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.dsl.components.common.importer.Importer" } id: "schema_importer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.schema_importer" } } } } outputs { outputs { key: "result" value { artifact_spec { type { name: "Schema" } } } } } parameters { parameters { key: "artifact_uri" value { field_value { string_value: "schema" } } } parameters { key: "reimport" value { field_value { int_value: 0 } } } } downstream_nodes: "ExampleValidator" downstream_nodes: "Transform" execution_options { caching_options { } } INFO:absl:Running as an importer node. INFO:absl:MetadataStore with DB connection initialized I1205 10:21:53.330585 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Processing source uri: schema, properties: {}, custom_properties: {} I1205 10:21:53.340232 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component schema_importer is finished. INFO:absl:Component StatisticsGen is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "ExampleValidator" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:21:53.360662 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 3 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=3, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-transform/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699713316 last_update_time_since_epoch: 1638699713316 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-transform/StatisticsGen/statistics/3" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-transform/StatisticsGen/.system/executor_execution/3/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/StatisticsGen/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/StatisticsGen/.system/executor_execution/3/.temp/', pipeline_node=node_info { type { name: "tfx.components.statistics_gen.component.StatisticsGen" } id: "StatisticsGen" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.StatisticsGen" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } } outputs { outputs { key: "statistics" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "CsvExampleGen" downstream_nodes: "ExampleValidator" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') INFO:absl:Generating statistics for split train. INFO:absl:Statistics for split train written to pipelines/penguin-transform/StatisticsGen/statistics/3/Split-train. INFO:absl:Generating statistics for split eval. INFO:absl:Statistics for split eval written to pipelines/penguin-transform/StatisticsGen/statistics/3/Split-eval. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 3 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'statistics': [Artifact(artifact: uri: "pipelines/penguin-transform/StatisticsGen/statistics/3" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}) for execution 3 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component StatisticsGen is finished. INFO:absl:Component Transform is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.transform.component.Transform" } id: "Transform" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Transform" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } } outputs { outputs { key: "post_transform_anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "post_transform_schema" value { artifact_spec { type { name: "Schema" } } } } outputs { key: "post_transform_stats" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "pre_transform_schema" value { artifact_spec { type { name: "Schema" } } } } outputs { key: "pre_transform_stats" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "transform_graph" value { artifact_spec { type { name: "TransformGraph" } } } } outputs { key: "updated_analyzer_cache" value { artifact_spec { type { name: "TransformCache" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "disable_statistics" value { field_value { int_value: 0 } } } parameters { key: "force_tf_compat_v1" value { field_value { int_value: 0 } } } parameters { key: "module_path" value { field_value { string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "schema_importer" downstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:21:56.029392 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 4 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=4, input_dict={'schema': [Artifact(artifact: id: 2 type_id: 17 uri: "schema" custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699713343 last_update_time_since_epoch: 1638699713343 , artifact_type: id: 17 name: "Schema" )], 'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-transform/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699713316 last_update_time_since_epoch: 1638699713316 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )]}, output_dict=defaultdict(<class 'list'>, {'updated_analyzer_cache': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/updated_analyzer_cache/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:updated_analyzer_cache:0" } } , artifact_type: name: "TransformCache" )], 'post_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_stats/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_stats:0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'pre_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_stats/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_stats:0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'pre_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_schema/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_schema:0" } } , artifact_type: name: "Schema" )], 'post_transform_anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_anomalies/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_anomalies:0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'transform_graph': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/transform_graph/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0" } } , artifact_type: name: "TransformGraph" )], 'post_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_schema/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_schema:0" } } , artifact_type: name: "Schema" )]}), exec_properties={'disable_statistics': 0, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'custom_config': 'null', 'force_tf_compat_v1': 0}, execution_output_uri='pipelines/penguin-transform/Transform/.system/executor_execution/4/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Transform/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Transform/.system/executor_execution/4/.temp/', pipeline_node=node_info { type { name: "tfx.components.transform.component.Transform" } id: "Transform" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Transform" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } } outputs { outputs { key: "post_transform_anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "post_transform_schema" value { artifact_spec { type { name: "Schema" } } } } outputs { key: "post_transform_stats" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "pre_transform_schema" value { artifact_spec { type { name: "Schema" } } } } outputs { key: "pre_transform_stats" value { artifact_spec { type { name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } outputs { key: "transform_graph" value { artifact_spec { type { name: "TransformGraph" } } } } outputs { key: "updated_analyzer_cache" value { artifact_spec { type { name: "TransformCache" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "disable_statistics" value { field_value { int_value: 0 } } } parameters { key: "force_tf_compat_v1" value { field_value { int_value: 0 } } } parameters { key: "module_path" value { field_value { string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "schema_importer" downstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set. INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn' INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp3elppure', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'] Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'. INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn' INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpctb52fyz', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'] Installing collected packages: tfx-user-code-Transform Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9 Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'. INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpgv9zk7st', 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'] Installing collected packages: tfx-user-code-Transform Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9 Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Transform Successfully installed tfx-user-code-Transform-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9 WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead. WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead. WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. 2021-12-05 10:22:06.547139: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/167780659a644435abe6c969ed4771de/assets INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/167780659a644435abe6c969ed4771de/assets WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/cbe53dc813ec4d51a99f25099bd3736e/assets INFO:tensorflow:Assets written to: pipelines/penguin-transform/Transform/transform_graph/4/.temp_path/tftransform_tmp/cbe53dc813ec4d51a99f25099bd3736e/assets WARNING:absl:Tables initialized inside a tf.function will be re-initialized on every invocation of the function. This re-initialization can have significant impact on performance. Consider lifting them out of the graph context using `tf.init_scope`.: key_value_init/LookupTableImportV2 INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:struct2tensor is not available. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 4 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'updated_analyzer_cache': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/updated_analyzer_cache/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:updated_analyzer_cache:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "TransformCache" )], 'post_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_stats/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_stats:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'pre_transform_stats': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_stats/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_stats:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'pre_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/pre_transform_schema/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:pre_transform_schema:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Schema" )], 'post_transform_anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_anomalies/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_anomalies:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )], 'transform_graph': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/transform_graph/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "TransformGraph" )], 'post_transform_schema': [Artifact(artifact: uri: "pipelines/penguin-transform/Transform/post_transform_schema/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:post_transform_schema:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Schema" )]}) for execution 4 INFO:absl:MetadataStore with DB connection initialized I1205 10:22:11.698540 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type I1205 10:22:11.707963 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Transform is finished. INFO:absl:Component ExampleValidator is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.example_validator.component.ExampleValidator" } id: "ExampleValidator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.ExampleValidator" } } } } inputs { inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "StatisticsGen" upstream_nodes: "schema_importer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:22:11.732254 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 5 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=5, input_dict={'schema': [Artifact(artifact: id: 2 type_id: 17 uri: "schema" custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699713343 last_update_time_since_epoch: 1638699713343 , artifact_type: id: 17 name: "Schema" )], 'statistics': [Artifact(artifact: id: 3 type_id: 19 uri: "pipelines/penguin-transform/StatisticsGen/statistics/3" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:StatisticsGen:statistics:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699716011 last_update_time_since_epoch: 1638699716011 , artifact_type: id: 19 name: "ExampleStatistics" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}, output_dict=defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/ExampleValidator/anomalies/5" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:ExampleValidator:anomalies:0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}), exec_properties={'exclude_splits': '[]'}, execution_output_uri='pipelines/penguin-transform/ExampleValidator/.system/executor_execution/5/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/ExampleValidator/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/ExampleValidator/.system/executor_execution/5/.temp/', pipeline_node=node_info { type { name: "tfx.components.example_validator.component.ExampleValidator" } id: "ExampleValidator" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.ExampleValidator" } } } } inputs { inputs { key: "schema" value { channels { producer_node_query { id: "schema_importer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.schema_importer" } } } artifact_query { type { name: "Schema" } } output_key: "result" } min_count: 1 } } inputs { key: "statistics" value { channels { producer_node_query { id: "StatisticsGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.StatisticsGen" } } } artifact_query { type { name: "ExampleStatistics" } } output_key: "statistics" } min_count: 1 } } } outputs { outputs { key: "anomalies" value { artifact_spec { type { name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } } } } } } parameters { parameters { key: "exclude_splits" value { field_value { string_value: "[]" } } } } upstream_nodes: "StatisticsGen" upstream_nodes: "schema_importer" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') INFO:absl:Validating schema against the computed statistics for split train. INFO:absl:Validation complete for split train. Anomalies written to pipelines/penguin-transform/ExampleValidator/anomalies/5/Split-train. INFO:absl:Validating schema against the computed statistics for split eval. INFO:absl:Validation complete for split eval. Anomalies written to pipelines/penguin-transform/ExampleValidator/anomalies/5/Split-eval. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 5 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'anomalies': [Artifact(artifact: uri: "pipelines/penguin-transform/ExampleValidator/anomalies/5" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:ExampleValidator:anomalies:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ExampleAnomalies" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } )]}) for execution 5 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component ExampleValidator is finished. INFO:absl:Component Trainer is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "transform_graph" value { channels { producer_node_query { id: "Transform" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.Transform" } } } artifact_query { type { name: "TransformGraph" } } output_key: "transform_graph" } } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Transform" downstream_nodes: "Pusher" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:22:11.785852 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 6 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=6, input_dict={'examples': [Artifact(artifact: id: 1 type_id: 15 uri: "pipelines/penguin-transform/CsvExampleGen/examples/1" properties { key: "split_names" value { string_value: "[\"train\", \"eval\"]" } } custom_properties { key: "file_format" value { string_value: "tfrecords_gzip" } } custom_properties { key: "input_fingerprint" value { string_value: "split:single_split,num_files:1,total_bytes:13161,xor_checksum:1638699709,sum_checksum:1638699709" } } custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:CsvExampleGen:examples:0" } } custom_properties { key: "payload_format" value { string_value: "FORMAT_TF_EXAMPLE" } } custom_properties { key: "span" value { int_value: 0 } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699713316 last_update_time_since_epoch: 1638699713316 , artifact_type: id: 15 name: "Examples" properties { key: "span" value: INT } properties { key: "split_names" value: STRING } properties { key: "version" value: INT } )], 'transform_graph': [Artifact(artifact: id: 9 type_id: 23 uri: "pipelines/penguin-transform/Transform/transform_graph/4" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Transform:transform_graph:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699731712 last_update_time_since_epoch: 1638699731712 , artifact_type: id: 23 name: "TransformGraph" )]}, output_dict=defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model/6" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0" } } , artifact_type: name: "Model" )], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model_run/6" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model_run:0" } } , artifact_type: name: "ModelRun" )]}), exec_properties={'custom_config': 'null', 'train_args': '{\n "num_steps": 100\n}', 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'eval_args': '{\n "num_steps": 5\n}'}, execution_output_uri='pipelines/penguin-transform/Trainer/.system/executor_execution/6/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Trainer/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Trainer/.system/executor_execution/6/.temp/', pipeline_node=node_info { type { name: "tfx.components.trainer.component.Trainer" } id: "Trainer" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Trainer" } } } } inputs { inputs { key: "examples" value { channels { producer_node_query { id: "CsvExampleGen" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.CsvExampleGen" } } } artifact_query { type { name: "Examples" } } output_key: "examples" } min_count: 1 } } inputs { key: "transform_graph" value { channels { producer_node_query { id: "Transform" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.Transform" } } } artifact_query { type { name: "TransformGraph" } } output_key: "transform_graph" } } } } outputs { outputs { key: "model" value { artifact_spec { type { name: "Model" } } } } outputs { key: "model_run" value { artifact_spec { type { name: "ModelRun" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "eval_args" value { field_value { string_value: "{\n \"num_steps\": 5\n}" } } } parameters { key: "module_path" value { field_value { string_value: "penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl" } } } parameters { key: "train_args" value { field_value { string_value: "{\n \"num_steps\": 100\n}" } } } } upstream_nodes: "CsvExampleGen" upstream_nodes: "Transform" downstream_nodes: "Pusher" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') INFO:absl:Train on the 'train' split when train_args.splits is not set. INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set. INFO:absl:udf_utils.get_fn {'custom_config': 'null', 'train_args': '{\n "num_steps": 100\n}', 'module_path': 'penguin_utils@pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl', 'eval_args': '{\n "num_steps": 5\n}'} 'run_fn' INFO:absl:Installing 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl' to a temporary directory. INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpfnmreae0', 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'] Processing ./pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl INFO:absl:Successfully installed 'pipelines/penguin-transform/_wheels/tfx_user_code_Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9-py3-none-any.whl'. INFO:absl:Training model. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. Installing collected packages: tfx-user-code-Trainer Successfully installed tfx-user-code-Trainer-0.0+a5e9139bd7facf5026b5306a6aea534f89db0dea58ebe1bb1fb5ebb9df5fdea9 INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_text is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:tensorflow_decision_forests is not available. INFO:tensorflow:struct2tensor is not available. INFO:tensorflow:struct2tensor is not available. INFO:absl:Feature body_mass_g has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_depth_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature culmen_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature flipper_length_mm has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature island has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature sex has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Feature species has a shape dim { size: 1 } . Setting to DenseTensor. INFO:absl:Model: "model" INFO:absl:__________________________________________________________________________________________________ INFO:absl:Layer (type) Output Shape Param # Connected to INFO:absl:================================================================================================== INFO:absl:culmen_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:culmen_depth_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:flipper_length_mm (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:body_mass_g (InputLayer) [(None, 1)] 0 INFO:absl:__________________________________________________________________________________________________ INFO:absl:concatenate (Concatenate) (None, 4) 0 culmen_length_mm[0][0] INFO:absl: culmen_depth_mm[0][0] INFO:absl: flipper_length_mm[0][0] INFO:absl: body_mass_g[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense (Dense) (None, 8) 40 concatenate[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_1 (Dense) (None, 8) 72 dense[0][0] INFO:absl:__________________________________________________________________________________________________ INFO:absl:dense_2 (Dense) (None, 3) 27 dense_1[0][0] INFO:absl:================================================================================================== INFO:absl:Total params: 139 INFO:absl:Trainable params: 139 INFO:absl:Non-trainable params: 0 INFO:absl:__________________________________________________________________________________________________ 100/100 [==============================] - 1s 4ms/step - loss: 0.2132 - sparse_categorical_accuracy: 0.9490 - val_loss: 0.0102 - val_sparse_categorical_accuracy: 1.0000 INFO:tensorflow:Assets written to: pipelines/penguin-transform/Trainer/model/6/Format-Serving/assets INFO:tensorflow:Assets written to: pipelines/penguin-transform/Trainer/model/6/Format-Serving/assets INFO:absl:Training complete. Model written to pipelines/penguin-transform/Trainer/model/6/Format-Serving. ModelRun written to pipelines/penguin-transform/Trainer/model_run/6 INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 6 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'model': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model/6" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "Model" )], 'model_run': [Artifact(artifact: uri: "pipelines/penguin-transform/Trainer/model_run/6" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model_run:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "ModelRun" )]}) for execution 6 INFO:absl:MetadataStore with DB connection initialized I1205 10:22:18.036643 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Trainer is finished. I1205 10:22:18.041664 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:Component Pusher is running. INFO:absl:Running launcher for node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-transform\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } INFO:absl:MetadataStore with DB connection initialized I1205 10:22:18.063011 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type INFO:absl:MetadataStore with DB connection initialized INFO:absl:Going to run a new execution 7 INFO:absl:Going to run a new execution: ExecutionInfo(execution_id=7, input_dict={'model': [Artifact(artifact: id: 12 type_id: 26 uri: "pipelines/penguin-transform/Trainer/model/6" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Trainer:model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } state: LIVE create_time_since_epoch: 1638699738045 last_update_time_since_epoch: 1638699738045 , artifact_type: id: 26 name: "Model" )]}, output_dict=defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-transform/Pusher/pushed_model/7" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Pusher:pushed_model:0" } } , artifact_type: name: "PushedModel" )]}), exec_properties={'push_destination': '{\n "filesystem": {\n "base_directory": "serving_model/penguin-transform"\n }\n}', 'custom_config': 'null'}, execution_output_uri='pipelines/penguin-transform/Pusher/.system/executor_execution/7/executor_output.pb', stateful_working_dir='pipelines/penguin-transform/Pusher/.system/stateful_working_dir/2021-12-05T10:21:51.187624', tmp_dir='pipelines/penguin-transform/Pusher/.system/executor_execution/7/.temp/', pipeline_node=node_info { type { name: "tfx.components.pusher.component.Pusher" } id: "Pusher" } contexts { contexts { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } contexts { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } contexts { type { name: "node" } name { field_value { string_value: "penguin-transform.Pusher" } } } } inputs { inputs { key: "model" value { channels { producer_node_query { id: "Trainer" } context_queries { type { name: "pipeline" } name { field_value { string_value: "penguin-transform" } } } context_queries { type { name: "pipeline_run" } name { field_value { string_value: "2021-12-05T10:21:51.187624" } } } context_queries { type { name: "node" } name { field_value { string_value: "penguin-transform.Trainer" } } } artifact_query { type { name: "Model" } } output_key: "model" } } } } outputs { outputs { key: "pushed_model" value { artifact_spec { type { name: "PushedModel" } } } } } parameters { parameters { key: "custom_config" value { field_value { string_value: "null" } } } parameters { key: "push_destination" value { field_value { string_value: "{\n \"filesystem\": {\n \"base_directory\": \"serving_model/penguin-transform\"\n }\n}" } } } } upstream_nodes: "Trainer" execution_options { caching_options { } } , pipeline_info=id: "penguin-transform" , pipeline_run_id='2021-12-05T10:21:51.187624') WARNING:absl:Pusher is going to push the model without validation. Consider using Evaluator or InfraValidator in your pipeline. INFO:absl:Model version: 1638699738 INFO:absl:Model written to serving path serving_model/penguin-transform/1638699738. INFO:absl:Model pushed to pipelines/penguin-transform/Pusher/pushed_model/7. INFO:absl:Cleaning up stateless execution info. INFO:absl:Execution 7 succeeded. INFO:absl:Cleaning up stateful execution info. INFO:absl:Publishing output artifacts defaultdict(<class 'list'>, {'pushed_model': [Artifact(artifact: uri: "pipelines/penguin-transform/Pusher/pushed_model/7" custom_properties { key: "name" value { string_value: "penguin-transform:2021-12-05T10:21:51.187624:Pusher:pushed_model:0" } } custom_properties { key: "tfx_version" value { string_value: "1.4.0" } } , artifact_type: name: "PushedModel" )]}) for execution 7 INFO:absl:MetadataStore with DB connection initialized INFO:absl:Component Pusher is finished. I1205 10:22:18.092860 24712 rdbms_metadata_access_object.cc:686] No property is defined for the Type
Anda akan melihat "INFO:absl:Komponen Pendorong selesai." jika pipa selesai dengan sukses.
Komponen pendorong mendorong model dilatih untuk SERVING_MODEL_DIR
yang merupakan serving_model/penguin-transform
direktori jika Anda tidak mengubah variabel dalam langkah-langkah sebelumnya. Anda dapat melihat hasilnya dari browser file di panel sisi kiri di Colab, atau menggunakan perintah berikut:
# List files in created model directory.
find {SERVING_MODEL_DIR}
serving_model/penguin-transform serving_model/penguin-transform/1638699738 serving_model/penguin-transform/1638699738/keras_metadata.pb serving_model/penguin-transform/1638699738/assets serving_model/penguin-transform/1638699738/variables serving_model/penguin-transform/1638699738/variables/variables.data-00000-of-00001 serving_model/penguin-transform/1638699738/variables/variables.index serving_model/penguin-transform/1638699738/saved_model.pb
Anda juga dapat memeriksa tanda tangan dari model yang dihasilkan menggunakan saved_model_cli
alat .
saved_model_cli show --dir {SERVING_MODEL_DIR}/$(ls -1 {SERVING_MODEL_DIR} | sort -nr | head -1) --tag_set serve --signature_def serving_default
The given SavedModel SignatureDef contains the following input(s): inputs['examples'] tensor_info: dtype: DT_STRING shape: (-1) name: serving_default_examples:0 The given SavedModel SignatureDef contains the following output(s): outputs['output_0'] tensor_info: dtype: DT_FLOAT shape: (-1, 3) name: StatefulPartitionedCall_2:0 Method name is: tensorflow/serving/predict
Karena kita mendefinisikan serving_default
dengan kita sendiri serve_tf_examples_fn
fungsi, tanda tangan menunjukkan bahwa dibutuhkan sebuah string tunggal. String ini adalah string serial dari tf.Examples dan akan diurai dengan tf.io.parse_example () fungsi seperti yang kita ditetapkan sebelumnya (mempelajari lebih lanjut tentang tf.Examples di sini ).
Kita dapat memuat model yang diekspor dan mencoba beberapa kesimpulan dengan beberapa contoh.
# Find a model with the latest timestamp.
model_dirs = (item for item in os.scandir(SERVING_MODEL_DIR) if item.is_dir())
model_path = max(model_dirs, key=lambda i: int(i.name)).path
loaded_model = tf.keras.models.load_model(model_path)
inference_fn = loaded_model.signatures['serving_default']
WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f5b0836e3d0> and <keras.engine.input_layer.InputLayer object at 0x7f5b091aa550>). WARNING:tensorflow:Inconsistent references when loading the checkpoint into this object graph. Either the Trackable object references in the Python program have changed in an incompatible way, or the checkpoint was generated in an incompatible program. Two checkpoint references resolved to different objects (<keras.saving.saved_model.load.TensorFlowTransform>TransformFeaturesLayer object at 0x7f5b0836e3d0> and <keras.engine.input_layer.InputLayer object at 0x7f5b091aa550>).
# Prepare an example and run inference.
features = {
'culmen_length_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[49.9])),
'culmen_depth_mm': tf.train.Feature(float_list=tf.train.FloatList(value=[16.1])),
'flipper_length_mm': tf.train.Feature(int64_list=tf.train.Int64List(value=[213])),
'body_mass_g': tf.train.Feature(int64_list=tf.train.Int64List(value=[5400])),
}
example_proto = tf.train.Example(features=tf.train.Features(feature=features))
examples = example_proto.SerializeToString()
result = inference_fn(examples=tf.constant([examples]))
print(result['output_0'].numpy())
[[-2.5357873 -3.0600576 3.4993587]]
Elemen ketiga, yang sesuai dengan spesies 'Gentoo', diharapkan menjadi yang terbesar di antara ketiganya.
Langkah selanjutnya
Jika Anda ingin mempelajari lebih lanjut tentang Transform komponen, lihat Transform Komponen panduan . Anda dapat menemukan lebih banyak sumber daya pada https://www.tensorflow.org/tfx/tutorials
Silakan lihat Memahami TFX Pipa untuk mempelajari lebih lanjut tentang berbagai konsep di TFX.