![]() |
BERT pretraining model V2.
tfm.nlp.models.BertPretrainerV2(
encoder_network: tf.keras.Model,
mlm_activation=None,
mlm_initializer='glorot_uniform',
classification_heads: Optional[List[tf.keras.layers.Layer]] = None,
customized_masked_lm: Optional[tf.keras.layers.Layer] = None,
name: str = 'bert',
**kwargs
)
Adds the masked language model head and optional classification heads upon the transformer encoder.
Args | |
---|---|
encoder_network
|
A transformer network. This network should output a sequence output and a classification output. |
mlm_activation
|
The activation (if any) to use in the masked LM network. If None, no activation will be used. |
mlm_initializer
|
The initializer (if any) to use in the masked LM. Default to a Glorot uniform initializer. |
classification_heads
|
A list of optional head layers to transform on encoder sequence outputs. |
customized_masked_lm
|
A customized masked_lm layer. If None, will create
a standard layer from layers.MaskedLM ; if not None, will use the
specified masked_lm layer. Above arguments mlm_activation and
mlm_initializer will be ignored.
|
name
|
The name of the model. |
Inputs: Inputs defined by the encoder network, plus masked_lm_positions
as a
dictionary.
Outputs: A dictionary of lm_output
, classification head outputs keyed by
head names, and also outputs from encoder_network
, keyed by
sequence_output
and encoder_outputs
(if any).
Attributes | |
---|---|
checkpoint_items
|
Returns a dictionary of items to be additionally checkpointed. |
Methods
call
call(
inputs
)
Calls the model on new inputs and returns the outputs as tensors.
In this case call()
just reapplies
all ops in the graph to the new inputs
(e.g. build a new computational graph from the provided inputs).
Args | |
---|---|
inputs
|
Input tensor, or dict/list/tuple of input tensors. |
training
|
Boolean or boolean scalar tensor, indicating whether to
run the Network in training mode or inference mode.
|
mask
|
A mask or list of masks. A mask can be either a boolean tensor or None (no mask). For more details, check the guide here. |
Returns | |
---|---|
A tensor if there is a single output, or a list of tensors if there are more than one outputs. |