Attend the Women in ML Symposium on December 7 Register now

tfm.vision.SemanticSegmentationTask

Stay organized with collections Save and categorize content based on your preferences.

A task for semantic segmentation.

Inherits From: Task

params the task configuration instance, which can be any of dataclass, ConfigDict, namedtuple, etc.
logging_dir a string pointing to where the model, summaries etc. will be saved. You can also write additional stuff in this directory.
name the task name.

logging_dir

task_config

Methods

aggregate_logs

View source

Optional aggregation over logs returned from a validation step.

Given step_logs from a validation step, this function aggregates the logs after each eval_step() (see eval_reduce() function in official/core/base_trainer.py). It runs on CPU and can be used to aggregate metrics during validation, when there are too many metrics that cannot fit into TPU memory. Note that this may increase latency due to data transfer between TPU and CPU. Also, the step output from a validation step may be a tuple with elements from replicas, and a concatenation of the elements is needed in such case.

Args
state The current state of training, for example, it can be a sequence of metrics.
step_logs Logs from a validation step. Can be a dictionary.

build_inputs

View source

Builds classification input.

build_losses

View source

Segmentation loss.

Args
labels labels.
model_outputs Output logits of the classifier.
aux_losses auxiliarly loss tensors, i.e. losses in keras.Model.

Returns
The total loss tensor.

build_metrics

View source

Gets streaming metrics for training/validation.

build_model

View source

Builds segmentation model.

create_optimizer

View source

Creates an TF optimizer from configurations.

Args
optimizer_config the parameters of the Optimization settings.
runtime_config the parameters of the runtime.
dp_config the parameter of differential privacy.

Returns
A tf.optimizers.Optimizer object.

inference_step

View source

Performs the forward step.

initialize

View source

Loads pretrained checkpoint.

process_compiled_metrics

View source

Process and update compiled_metrics.

call when using compile/fit API.

Args
compiled_metrics the compiled metrics (model.compiled_metrics).
labels a tensor or a nested structure of tensors.
model_outputs a tensor or a nested structure of tensors. For example, output of the keras model built by self.build_model.

process_metrics

View source

Process and update metrics.

Called when using custom training loop API.

Args
metrics a nested structure of metrics objects. The return of function self.build_metrics.
labels a tensor or a nested structure of tensors.
model_outputs a tensor or a nested structure of tensors. For example, output of the keras model built by self.build_model.
**kwargs other args.

reduce_aggregated_logs

View source

Optional reduce of aggregated logs over validation steps.

This function reduces aggregated logs at the end of validation, and can be used to compute the final metrics. It runs on CPU and in each eval_end() in base trainer (see eval_end() function in official/core/base_trainer.py).

Args
aggregated_logs Aggregated logs over multiple validation steps.
global_step An optional variable of global step.

Returns
A dictionary of reduced results.

train_step

View source

Does forward and backward.

Args
inputs a dictionary of input tensors.
model the model, forward pass definition.
optimizer the optimizer for this training step.
metrics a nested structure of metrics objects.

Returns
A dictionary of logs.

validation_step

View source

Validatation step.

Args
inputs a dictionary of input tensors.
model the keras.Model.
metrics a nested structure of metrics objects.

Returns
A dictionary of logs.

loss 'loss'