A video classification class builder.
tfm.vision.models.VideoClassificationModel(
backbone: tf.keras.Model,
num_classes: int,
input_specs: Optional[Mapping[str, tf.keras.layers.InputSpec]] = None,
dropout_rate: float = 0.0,
aggregate_endpoints: bool = False,
kernel_initializer: str = 'random_uniform',
kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
bias_regularizer: Optional[tf.keras.regularizers.Regularizer] = None,
require_endpoints: Optional[List[Text]] = None,
**kwargs
)
Args |
backbone
|
a 3d backbone network.
|
num_classes
|
int number of classes in classification task.
|
input_specs
|
tf.keras.layers.InputSpec specs of the input tensor.
|
dropout_rate
|
float rate for dropout regularization.
|
aggregate_endpoints
|
bool aggregate all end ponits or only use the
final end point.
|
kernel_initializer
|
kernel initializer for the dense layer.
|
kernel_regularizer
|
tf.keras.regularizers.Regularizer object. Default to
None.
|
bias_regularizer
|
tf.keras.regularizers.Regularizer object. Default to
None.
|
require_endpoints
|
the required endpoints for prediction. If None or
empty, then only uses the final endpoint.
|
**kwargs
|
keyword arguments to be passed.
|
Attributes |
backbone
|
|
checkpoint_items
|
Returns a dictionary of items to be additionally checkpointed.
|
Methods
call
call(
inputs, training=None, mask=None
)
Calls the model on new inputs and returns the outputs as tensors.
In this case call()
just reapplies
all ops in the graph to the new inputs
(e.g. build a new computational graph from the provided inputs).
Args |
inputs
|
Input tensor, or dict/list/tuple of input tensors.
|
training
|
Boolean or boolean scalar tensor, indicating whether to
run the Network in training mode or inference mode.
|
mask
|
A mask or list of masks. A mask can be either a boolean tensor
or None (no mask). For more details, check the guide
here.
|
Returns |
A tensor if there is a single output, or
a list of tensors if there are more than one outputs.
|