Esta página foi traduzida pela API Cloud Translation.
Switch to English

tf.data: criar pipelines de entrada do TensorFlow

Ver em TensorFlow.org Executar no Google Colab Ver fonte no GitHub Download do caderno

A API tf.data permite criar pipelines de entrada complexos a partir de peças simples e reutilizáveis. Por exemplo, o pipeline de um modelo de imagem pode agregar dados de arquivos em um sistema de arquivos distribuído, aplicar perturbações aleatórias a cada imagem e mesclar imagens selecionadas aleatoriamente em um lote para treinamento. O pipeline para um modelo de texto pode envolver a extração de símbolos de dados de texto não processado, convertendo-os em incorporadores de identificadores com uma tabela de pesquisa e agrupando sequências de comprimentos diferentes. A API tf.data torna possível manipular grandes quantidades de dados, ler de diferentes formatos de dados e executar transformações complexas.

A API tf.data apresenta uma abstração tf.data.Dataset que representa uma sequência de elementos, na qual cada elemento consiste em um ou mais componentes. Por exemplo, em um pipeline de imagem, um elemento pode ser um único exemplo de treinamento, com um par de componentes tensores representando a imagem e seu rótulo.

Existem duas maneiras distintas de criar um conjunto de dados:

  • Uma fonte de dados constrói um Dataset de dados a partir de dados armazenados na memória ou em um ou mais arquivos.

  • Uma transformação de dados constrói um conjunto de dados de um ou mais objetos tf.data.Dataset .

 import tensorflow as tf
 
 import pathlib
import os
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

np.set_printoptions(precision=4)
 

Mecânica básica

Para criar um pipeline de entrada, você deve começar com uma fonte de dados. Por exemplo, para construir um Dataset de dados a partir de dados na memória, você pode usar tf.data.Dataset.from_tensors() ou tf.data.Dataset.from_tensor_slices() . Como alternativa, se seus dados de entrada estiverem armazenados em um arquivo no formato TFRecord recomendado, você poderá usar tf.data.TFRecordDataset() .

Depois de ter um objeto Dataset , você pode transformá- lo em um novo Dataset de Dataset encadeando chamadas de método ao objeto tf.data.Dataset . Por exemplo, você pode aplicar transformações por elemento, como Dataset.map() , e transformações de vários elementos, como Dataset.batch() . Consulte a documentação de tf.data.Dataset para obter uma lista completa de transformações.

O objeto Dataset é iterável em Python. Isso torna possível consumir seus elementos usando um loop for:

 dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])
dataset
 
<TensorSliceDataset shapes: (), types: tf.int32>
 for elem in dataset:
  print(elem.numpy())
 
8
3
0
8
2
1

Ou criando explicitamente um iterador Python usando o iter e consumindo seus elementos usando o next :

 it = iter(dataset)

print(next(it).numpy())
 
8

Como alternativa, os elementos do conjunto de dados podem ser consumidos usando a transformação de reduce , que reduz todos os elementos para produzir um único resultado. O exemplo a seguir ilustra como usar a transformação de reduce para calcular a soma de um conjunto de dados de números inteiros.

 print(dataset.reduce(0, lambda state, value: state + value).numpy())
 
22

Estrutura do conjunto de dados

Um conjunto de dados contém elementos em que cada um tem a mesma estrutura (aninhada) e os componentes individuais da estrutura podem ser de qualquer tipo representável por tf.TypeSpec , incluindo tf.Tensor , tf.sparse.SparseTensor , tf.RaggedTensor , tf.TensorArray , ou tf.data.Dataset .

A propriedade Dataset.element_spec permite inspecionar o tipo de cada componente do elemento. A propriedade retorna uma estrutura aninhada de objetos tf.TypeSpec , correspondendo à estrutura do elemento, que pode ser um único componente, uma tupla de componentes ou uma tupla aninhada de componentes. Por exemplo:

 dataset1 = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4, 10]))

dataset1.element_spec
 
TensorSpec(shape=(10,), dtype=tf.float32, name=None)
 dataset2 = tf.data.Dataset.from_tensor_slices(
   (tf.random.uniform([4]),
    tf.random.uniform([4, 100], maxval=100, dtype=tf.int32)))

dataset2.element_spec
 
(TensorSpec(shape=(), dtype=tf.float32, name=None),
 TensorSpec(shape=(100,), dtype=tf.int32, name=None))
 dataset3 = tf.data.Dataset.zip((dataset1, dataset2))

dataset3.element_spec
 
(TensorSpec(shape=(10,), dtype=tf.float32, name=None),
 (TensorSpec(shape=(), dtype=tf.float32, name=None),
  TensorSpec(shape=(100,), dtype=tf.int32, name=None)))
 # Dataset containing a sparse tensor.
dataset4 = tf.data.Dataset.from_tensors(tf.SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4]))

dataset4.element_spec
 
SparseTensorSpec(TensorShape([3, 4]), tf.int32)
 # Use value_type to see the type of value represented by the element spec
dataset4.element_spec.value_type
 
tensorflow.python.framework.sparse_tensor.SparseTensor

Os Dataset transformações suportar conjuntos de dados de qualquer estrutura. Ao usar as Dataset.map() e Dataset.filter() , que aplicam uma função a cada elemento, a estrutura do elemento determina os argumentos da função:

 dataset1 = tf.data.Dataset.from_tensor_slices(
    tf.random.uniform([4, 10], minval=1, maxval=10, dtype=tf.int32))

dataset1
 
<TensorSliceDataset shapes: (10,), types: tf.int32>
 for z in dataset1:
  print(z.numpy())
 
[8 1 2 6 1 7 2 6 1 3]
[6 5 6 5 3 5 2 5 3 6]
[5 8 4 8 3 1 4 6 4 8]
[2 4 5 8 3 5 7 9 4 2]

 dataset2 = tf.data.Dataset.from_tensor_slices(
   (tf.random.uniform([4]),
    tf.random.uniform([4, 100], maxval=100, dtype=tf.int32)))

dataset2
 
<TensorSliceDataset shapes: ((), (100,)), types: (tf.float32, tf.int32)>
 dataset3 = tf.data.Dataset.zip((dataset1, dataset2))

dataset3
 
<ZipDataset shapes: ((10,), ((), (100,))), types: (tf.int32, (tf.float32, tf.int32))>
 for a, (b,c) in dataset3:
  print('shapes: {a.shape}, {b.shape}, {c.shape}'.format(a=a, b=b, c=c))
 
shapes: (10,), (), (100,)
shapes: (10,), (), (100,)
shapes: (10,), (), (100,)
shapes: (10,), (), (100,)

Lendo dados de entrada

Consumindo matrizes NumPy

Consulte Carregando matrizes NumPy para obter mais exemplos.

Se todos os dados de entrada couberem na memória, a maneira mais simples de criar um Dataset de Dataset partir deles é convertê-los em objetos tf.Tensor e usar Dataset.from_tensor_slices() .

 train, test = tf.keras.datasets.fashion_mnist.load_data()
 
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

 images, labels = train
images = images/255

dataset = tf.data.Dataset.from_tensor_slices((images, labels))
dataset
 
<TensorSliceDataset shapes: ((28, 28), ()), types: (tf.float64, tf.uint8)>

Consumindo geradores Python

Outra fonte de dados comum que pode ser facilmente ingerida como um tf.data.Dataset é o gerador python.

 def count(stop):
  i = 0
  while i<stop:
    yield i
    i += 1
 
 for n in count(5):
  print(n)
 
0
1
2
3
4

O construtor Dataset.from_generator converte o gerador python em um tf.data.Dataset totalmente funcional.

O construtor recebe uma chamada como entrada, não um iterador. Isso permite reiniciar o gerador quando chegar ao fim. É necessário um argumento opcional args , que é passado como argumentos da chamada.

O argumento output_types é necessário porque tf.data cria um tf.Graph internamente e as arestas do gráfico exigem um tf.dtype .

 ds_counter = tf.data.Dataset.from_generator(count, args=[25], output_types=tf.int32, output_shapes = (), )
 
 for count_batch in ds_counter.repeat().batch(10).take(10):
  print(count_batch.numpy())
 
[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24  0  1  2  3  4]
[ 5  6  7  8  9 10 11 12 13 14]
[15 16 17 18 19 20 21 22 23 24]
[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24  0  1  2  3  4]
[ 5  6  7  8  9 10 11 12 13 14]
[15 16 17 18 19 20 21 22 23 24]

O argumento output_shapes não é necessário, mas é altamente recomendado, pois muitas operações de fluxo tensor não suportam tensores com classificação desconhecida. Se o comprimento de um eixo em particular for desconhecido ou variável, defina-o como None no output_shapes .

Também é importante observar que os output_shapes e output_types seguem as mesmas regras de aninhamento que outros métodos de conjunto de dados.

Aqui está um exemplo de gerador que demonstra os dois aspectos: retorna tuplas de matrizes, onde a segunda matriz é um vetor com comprimento desconhecido.

 def gen_series():
  i = 0
  while True:
    size = np.random.randint(0, 10)
    yield i, np.random.normal(size=(size,))
    i += 1
 
 for i, series in gen_series():
  print(i, ":", str(series))
  if i > 5:
    break
 
0 : [-1.978  -1.0531  0.1959 -2.1618]
1 : [ 1.9185 -0.1874  0.5084]
2 : [0.1441 0.3987 0.7737 0.9266 1.5057 0.9151]
3 : [ 0.681  -0.6155 -0.1231 -0.2429  0.6892  1.2571 -1.7588 -1.6575 -0.5375]
4 : [-0.5567  1.5298  0.7242  0.2213]
5 : [ 1.5572 -0.6856]
6 : [-1.0965 -0.336   1.2405  0.6006]

A primeira saída é um int32 o segundo é um float32 .

O primeiro item é um escalar, shape () , e o segundo é um vetor de comprimento desconhecido, shape (None,)

 ds_series = tf.data.Dataset.from_generator(
    gen_series, 
    output_types=(tf.int32, tf.float32), 
    output_shapes=((), (None,)))

ds_series
 
<FlatMapDataset shapes: ((), (None,)), types: (tf.int32, tf.float32)>

Agora ele pode ser usado como um tf.data.Dataset comum. Observe que, ao colocar em lote um conjunto de dados com uma forma variável, você precisa usar o Dataset.padded_batch .

 ds_series_batch = ds_series.shuffle(20).padded_batch(10)

ids, sequence_batch = next(iter(ds_series_batch))
print(ids.numpy())
print()
print(sequence_batch.numpy())
 
[ 2 10 18  3  6 15 25 23  0  4]

[[ 1.2665 -0.6274  0.4076  1.0146  0.      0.      0.      0.    ]
 [ 0.8091 -0.0683 -0.1464  0.2734  0.7461 -0.1009  0.      0.    ]
 [-0.9381  1.5075  0.      0.      0.      0.      0.      0.    ]
 [ 1.5705  0.4438  0.      0.      0.      0.      0.      0.    ]
 [-0.4692 -1.8328 -2.2838  0.7418  0.0172 -0.3547 -1.4502 -1.2786]
 [-1.574   0.      0.      0.      0.      0.      0.      0.    ]
 [-0.9274  1.4758  0.      0.      0.      0.      0.      0.    ]
 [-0.5043  0.7066  0.9599 -1.2986  0.      0.      0.      0.    ]
 [ 0.      0.      0.      0.      0.      0.      0.      0.    ]
 [-0.4893 -0.6937  0.      0.      0.      0.      0.      0.    ]]

Para um exemplo mais realista, tente tf.data.Dataset preprocessing.image.ImageDataGenerator como um tf.data.Dataset .

Primeiro baixe os dados:

 flowers = tf.keras.utils.get_file(
    'flower_photos',
    'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
    untar=True)
 
Downloading data from https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
228818944/228813984 [==============================] - 2s 0us/step

Crie a image.ImageDataGenerator

 img_gen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, rotation_range=20)
 
 images, labels = next(img_gen.flow_from_directory(flowers))
 
Found 3670 images belonging to 5 classes.

 print(images.dtype, images.shape)
print(labels.dtype, labels.shape)
 
float32 (32, 256, 256, 3)
float32 (32, 5)

 ds = tf.data.Dataset.from_generator(
    img_gen.flow_from_directory, args=[flowers], 
    output_types=(tf.float32, tf.float32), 
    output_shapes=([32,256,256,3], [32,5])
)

ds
 
<FlatMapDataset shapes: ((32, 256, 256, 3), (32, 5)), types: (tf.float32, tf.float32)>

Consumindo dados do TFRecord

Consulte Carregando TFRecords para obter um exemplo de ponta a ponta.

A API tf.data suporta uma variedade de formatos de arquivo para que você possa processar grandes conjuntos de dados que não cabem na memória. Por exemplo, o formato de arquivo TFRecord é um formato binário simples orientado a registros que muitos aplicativos TensorFlow usam para dados de treinamento. A classe tf.data.TFRecordDataset permite transmitir o conteúdo de um ou mais arquivos TFRecord como parte de um pipeline de entrada.

Aqui está um exemplo usando o arquivo de teste do French Street Name Signs (FSNS).

 # Creates a dataset that reads all of the examples from two files.
fsns_test_file = tf.keras.utils.get_file("fsns.tfrec", "https://storage.googleapis.com/download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001")
 
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001
7905280/7904079 [==============================] - 0s 0us/step

O argumento de filenames para o inicializador TFRecordDataset pode ser uma cadeia de caracteres, uma lista de cadeias de caracteres ou um tf.Tensor de cadeias de caracteres. Portanto, se você tiver dois conjuntos de arquivos para fins de treinamento e validação, poderá criar um método de fábrica que produz o conjunto de dados, usando nomes de arquivos como argumento de entrada:

 dataset = tf.data.TFRecordDataset(filenames = [fsns_test_file])
dataset
 
<TFRecordDatasetV2 shapes: (), types: tf.string>

Muitos projetos TensorFlow usam registros serializados tf.train.Example em seus arquivos TFRecord. Eles precisam ser decodificados antes de serem inspecionados:

 raw_example = next(iter(dataset))
parsed = tf.train.Example.FromString(raw_example.numpy())

parsed.features.feature['image/text']
 
bytes_list {
  value: "Rue Perreyon"
}

Consumindo dados de texto

Consulte Carregando texto para obter um exemplo completo.

Muitos conjuntos de dados são distribuídos como um ou mais arquivos de texto. O tf.data.TextLineDataset fornece uma maneira fácil de extrair linhas de um ou mais arquivos de texto. Dado um ou mais nomes de arquivos, um TextLineDataset produzirá um elemento com valor de sequência por linha desses arquivos.

 directory_url = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/'
file_names = ['cowper.txt', 'derby.txt', 'butler.txt']

file_paths = [
    tf.keras.utils.get_file(file_name, directory_url + file_name)
    for file_name in file_names
]
 
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/cowper.txt
819200/815980 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/derby.txt
811008/809730 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/butler.txt
811008/807992 [==============================] - 0s 0us/step

 dataset = tf.data.TextLineDataset(file_paths)
 

Aqui estão as primeiras linhas do primeiro arquivo:

 for line in dataset.take(5):
  print(line.numpy())
 
b"\xef\xbb\xbfAchilles sing, O Goddess! Peleus' son;"
b'His wrath pernicious, who ten thousand woes'
b"Caused to Achaia's host, sent many a soul"
b'Illustrious into Ades premature,'
b'And Heroes gave (so stood the will of Jove)'

Para alternar linhas entre arquivos, use Dataset.interleave . Isso facilita a organização aleatória dos arquivos. Aqui estão as primeira, segunda e terceira linhas de cada tradução:

 files_ds = tf.data.Dataset.from_tensor_slices(file_paths)
lines_ds = files_ds.interleave(tf.data.TextLineDataset, cycle_length=3)

for i, line in enumerate(lines_ds.take(9)):
  if i % 3 == 0:
    print()
  print(line.numpy())
 

b"\xef\xbb\xbfAchilles sing, O Goddess! Peleus' son;"
b"\xef\xbb\xbfOf Peleus' son, Achilles, sing, O Muse,"
b'\xef\xbb\xbfSing, O goddess, the anger of Achilles son of Peleus, that brought'

b'His wrath pernicious, who ten thousand woes'
b'The vengeance, deep and deadly; whence to Greece'
b'countless ills upon the Achaeans. Many a brave soul did it send'

b"Caused to Achaia's host, sent many a soul"
b'Unnumbered ills arose; which many a soul'
b'hurrying down to Hades, and many a hero did it yield a prey to dogs and'

Por padrão, um TextLineDataset gera todas as linhas de cada arquivo, o que pode não ser desejável, por exemplo, se o arquivo iniciar com uma linha de cabeçalho ou contiver comentários. Essas linhas podem ser removidas usando as Dataset.skip() ou Dataset.filter() . Aqui, você pula a primeira linha e depois filtra para encontrar apenas sobreviventes.

 titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv")
titanic_lines = tf.data.TextLineDataset(titanic_file)
 
Downloading data from https://storage.googleapis.com/tf-datasets/titanic/train.csv
32768/30874 [===============================] - 0s 0us/step

 for line in titanic_lines.take(10):
  print(line.numpy())
 
b'survived,sex,age,n_siblings_spouses,parch,fare,class,deck,embark_town,alone'
b'0,male,22.0,1,0,7.25,Third,unknown,Southampton,n'
b'1,female,38.0,1,0,71.2833,First,C,Cherbourg,n'
b'1,female,26.0,0,0,7.925,Third,unknown,Southampton,y'
b'1,female,35.0,1,0,53.1,First,C,Southampton,n'
b'0,male,28.0,0,0,8.4583,Third,unknown,Queenstown,y'
b'0,male,2.0,3,1,21.075,Third,unknown,Southampton,n'
b'1,female,27.0,0,2,11.1333,Third,unknown,Southampton,n'
b'1,female,14.0,1,0,30.0708,Second,unknown,Cherbourg,n'
b'1,female,4.0,1,1,16.7,Third,G,Southampton,n'

 def survived(line):
  return tf.not_equal(tf.strings.substr(line, 0, 1), "0")

survivors = titanic_lines.skip(1).filter(survived)
 
 for line in survivors.take(10):
  print(line.numpy())
 
b'1,female,38.0,1,0,71.2833,First,C,Cherbourg,n'
b'1,female,26.0,0,0,7.925,Third,unknown,Southampton,y'
b'1,female,35.0,1,0,53.1,First,C,Southampton,n'
b'1,female,27.0,0,2,11.1333,Third,unknown,Southampton,n'
b'1,female,14.0,1,0,30.0708,Second,unknown,Cherbourg,n'
b'1,female,4.0,1,1,16.7,Third,G,Southampton,n'
b'1,male,28.0,0,0,13.0,Second,unknown,Southampton,y'
b'1,female,28.0,0,0,7.225,Third,unknown,Cherbourg,y'
b'1,male,28.0,0,0,35.5,First,A,Southampton,y'
b'1,female,38.0,1,5,31.3875,Third,unknown,Southampton,n'

Consumindo dados CSV

Consulte Carregando arquivos CSV e Carregando DataFrames do Pandas para obter mais exemplos.

O formato de arquivo CSV é um formato popular para armazenar dados tabulares em texto sem formatação.

Por exemplo:

 titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv")
 
 df = pd.read_csv(titanic_file, index_col=None)
df.head()
 

Se seus dados Dataset.from_tensor_slices na memória, o mesmo método Dataset.from_tensor_slices funcionará nos dicionários, permitindo que esses dados sejam facilmente importados:

 titanic_slices = tf.data.Dataset.from_tensor_slices(dict(df))

for feature_batch in titanic_slices.take(1):
  for key, value in feature_batch.items():
    print("  {!r:20s}: {}".format(key, value))
 
  'survived'          : 0
  'sex'               : b'male'
  'age'               : 22.0
  'n_siblings_spouses': 1
  'parch'             : 0
  'fare'              : 7.25
  'class'             : b'Third'
  'deck'              : b'unknown'
  'embark_town'       : b'Southampton'
  'alone'             : b'n'

Uma abordagem mais escalável é carregar do disco, conforme necessário.

O módulo tf.data fornece métodos para extrair registros de um ou mais arquivos CSV compatíveis com o RFC 4180 .

A função experimental.make_csv_dataset é a interface de alto nível para a leitura de conjuntos de arquivos csv. Ele suporta inferência de tipo de coluna e muitos outros recursos, como lotes e embaralhamento, para simplificar o uso.

 titanic_batches = tf.data.experimental.make_csv_dataset(
    titanic_file, batch_size=4,
    label_name="survived")
 
 for feature_batch, label_batch in titanic_batches.take(1):
  print("'survived': {}".format(label_batch))
  print("features:")
  for key, value in feature_batch.items():
    print("  {!r:20s}: {}".format(key, value))
 
'survived': [0 1 0 0]
features:
  'sex'               : [b'male' b'female' b'male' b'male']
  'age'               : [28. 42. 43. 21.]
  'n_siblings_spouses': [0 0 0 0]
  'parch'             : [0 0 0 0]
  'fare'              : [47.1    13.      8.05    8.6625]
  'class'             : [b'First' b'Second' b'Third' b'Third']
  'deck'              : [b'unknown' b'unknown' b'unknown' b'unknown']
  'embark_town'       : [b'Southampton' b'Southampton' b'Southampton' b'Southampton']
  'alone'             : [b'y' b'y' b'y' b'y']

Você pode usar o argumento select_columns se precisar apenas de um subconjunto de colunas.

 titanic_batches = tf.data.experimental.make_csv_dataset(
    titanic_file, batch_size=4,
    label_name="survived", select_columns=['class', 'fare', 'survived'])
 
 for feature_batch, label_batch in titanic_batches.take(1):
  print("'survived': {}".format(label_batch))
  for key, value in feature_batch.items():
    print("  {!r:20s}: {}".format(key, value))
 
'survived': [1 0 1 1]
  'fare'              : [24.15    0.     13.8583 53.1   ]
  'class'             : [b'Third' b'Second' b'Second' b'First']

Há também uma classe experimental.CsvDataset nível inferior, que fornece controle mais refinado. Não suporta inferência de tipo de coluna. Em vez disso, você deve especificar o tipo de cada coluna.

 titanic_types  = [tf.int32, tf.string, tf.float32, tf.int32, tf.int32, tf.float32, tf.string, tf.string, tf.string, tf.string] 
dataset = tf.data.experimental.CsvDataset(titanic_file, titanic_types , header=True)

for line in dataset.take(10):
  print([item.numpy() for item in line])
 
[0, b'male', 22.0, 1, 0, 7.25, b'Third', b'unknown', b'Southampton', b'n']
[1, b'female', 38.0, 1, 0, 71.2833, b'First', b'C', b'Cherbourg', b'n']
[1, b'female', 26.0, 0, 0, 7.925, b'Third', b'unknown', b'Southampton', b'y']
[1, b'female', 35.0, 1, 0, 53.1, b'First', b'C', b'Southampton', b'n']
[0, b'male', 28.0, 0, 0, 8.4583, b'Third', b'unknown', b'Queenstown', b'y']
[0, b'male', 2.0, 3, 1, 21.075, b'Third', b'unknown', b'Southampton', b'n']
[1, b'female', 27.0, 0, 2, 11.1333, b'Third', b'unknown', b'Southampton', b'n']
[1, b'female', 14.0, 1, 0, 30.0708, b'Second', b'unknown', b'Cherbourg', b'n']
[1, b'female', 4.0, 1, 1, 16.7, b'Third', b'G', b'Southampton', b'n']
[0, b'male', 20.0, 0, 0, 8.05, b'Third', b'unknown', b'Southampton', b'y']

Se algumas colunas estiverem vazias, essa interface de baixo nível permitirá que você forneça valores padrão em vez de tipos de coluna.

 %%writefile missing.csv
1,2,3,4
,2,3,4
1,,3,4
1,2,,4
1,2,3,
,,,
 
Writing missing.csv

 # Creates a dataset that reads all of the records from two CSV files, each with
# four float columns which may have missing values.

record_defaults = [999,999,999,999]
dataset = tf.data.experimental.CsvDataset("missing.csv", record_defaults)
dataset = dataset.map(lambda *items: tf.stack(items))
dataset
 
<MapDataset shapes: (4,), types: tf.int32>
 for line in dataset:
  print(line.numpy())
 
[1 2 3 4]
[999   2   3   4]
[  1 999   3   4]
[  1   2 999   4]
[  1   2   3 999]
[999 999 999 999]

Por padrão, um CsvDataset gera todas as colunas de todas as linhas do arquivo, o que pode não ser desejável, por exemplo, se o arquivo iniciar com uma linha de cabeçalho que deve ser ignorada ou se algumas colunas não forem necessárias na entrada. Essas linhas e campos podem ser removidos com os argumentos header e select_cols respectivamente.

 # Creates a dataset that reads all of the records from two CSV files with
# headers, extracting float data from columns 2 and 4.
record_defaults = [999, 999] # Only provide defaults for the selected columns
dataset = tf.data.experimental.CsvDataset("missing.csv", record_defaults, select_cols=[1, 3])
dataset = dataset.map(lambda *items: tf.stack(items))
dataset
 
<MapDataset shapes: (2,), types: tf.int32>
 for line in dataset:
  print(line.numpy())
 
[2 4]
[2 4]
[999   4]
[2 4]
[  2 999]
[999 999]

Consumindo conjuntos de arquivos

Existem muitos conjuntos de dados distribuídos como um conjunto de arquivos, onde cada arquivo é um exemplo.

 flowers_root = tf.keras.utils.get_file(
    'flower_photos',
    'https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
    untar=True)
flowers_root = pathlib.Path(flowers_root)

 

O diretório raiz contém um diretório para cada classe:

 for item in flowers_root.glob("*"):
  print(item.name)
 
sunflowers
daisy
LICENSE.txt
roses
tulips
dandelion

Os arquivos em cada diretório de classe são exemplos:

 list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*'))

for f in list_ds.take(5):
  print(f.numpy())
 
b'/home/kbuilder/.keras/datasets/flower_photos/dandelion/7243478942_30bf542a2d_m.jpg'
b'/home/kbuilder/.keras/datasets/flower_photos/tulips/4525067924_177ea3bfb4.jpg'
b'/home/kbuilder/.keras/datasets/flower_photos/tulips/7002703410_3e97b29da5_n.jpg'
b'/home/kbuilder/.keras/datasets/flower_photos/daisy/6299910262_336309ffa5_n.jpg'
b'/home/kbuilder/.keras/datasets/flower_photos/sunflowers/6140661443_bb48344226.jpg'

Leia os dados usando a função tf.io.read_file e extraia o rótulo do caminho, retornando pares (image, label) :

 def process_path(file_path):
  label = tf.strings.split(file_path, os.sep)[-2]
  return tf.io.read_file(file_path), label

labeled_ds = list_ds.map(process_path)
 
 for image_raw, label_text in labeled_ds.take(1):
  print(repr(image_raw.numpy()[:100]))
  print()
  print(label_text.numpy())
 
b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x01\x00H\x00H\x00\x00\xff\xe2\x0cXICC_PROFILE\x00\x01\x01\x00\x00\x0cHLino\x02\x10\x00\x00mntrRGB XYZ \x07\xce\x00\x02\x00\t\x00\x06\x001\x00\x00acspMSFT\x00\x00\x00\x00IEC sRGB\x00\x00\x00\x00\x00\x00'

b'tulips'

Elementos de conjunto de dados em lote

Lote simples

A forma mais simples de lote empilha n elementos consecutivos de um conjunto de dados em um único elemento. A transformação Dataset.batch() faz exatamente isso, com as mesmas restrições que o operador tf.stack() , aplicado a cada componente dos elementos: ou seja, para cada componente i , todos os elementos devem ter um tensor exatamente da mesma forma.

 inc_dataset = tf.data.Dataset.range(100)
dec_dataset = tf.data.Dataset.range(0, -100, -1)
dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset))
batched_dataset = dataset.batch(4)

for batch in batched_dataset.take(4):
  print([arr.numpy() for arr in batch])
 
[array([0, 1, 2, 3]), array([ 0, -1, -2, -3])]
[array([4, 5, 6, 7]), array([-4, -5, -6, -7])]
[array([ 8,  9, 10, 11]), array([ -8,  -9, -10, -11])]
[array([12, 13, 14, 15]), array([-12, -13, -14, -15])]

Enquanto tf.data tenta propagar informações de forma, as configurações padrão do Dataset.batch resultam em um tamanho de lote desconhecido, pois o último lote pode não estar cheio. Observe os None s na forma:

 batched_dataset
 
<BatchDataset shapes: ((None,), (None,)), types: (tf.int64, tf.int64)>

Use o argumento drop_remainder para ignorar o último lote e obter a propagação completa da forma:

 batched_dataset = dataset.batch(7, drop_remainder=True)
batched_dataset
 
<BatchDataset shapes: ((7,), (7,)), types: (tf.int64, tf.int64)>

Tensores de dosagem com preenchimento

A receita acima funciona para tensores que todos têm o mesmo tamanho. No entanto, muitos modelos (por exemplo, modelos de sequência) trabalham com dados de entrada que podem ter tamanhos variados (por exemplo, sequências de comprimentos diferentes). Para lidar com esse caso, a transformação Dataset.padded_batch permite Dataset.padded_batch tensores de formas diferentes, especificando uma ou mais dimensões nas quais eles podem ser preenchidos.

 dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
dataset = dataset.padded_batch(4, padded_shapes=(None,))

for batch in dataset.take(2):
  print(batch.numpy())
  print()

 
[[0 0 0]
 [1 0 0]
 [2 2 0]
 [3 3 3]]

[[4 4 4 4 0 0 0]
 [5 5 5 5 5 0 0]
 [6 6 6 6 6 6 0]
 [7 7 7 7 7 7 7]]


A transformação Dataset.padded_batch permite definir preenchimentos diferentes para cada dimensão de cada componente e pode ser de comprimento variável (representado por None no exemplo acima) ou de comprimento constante. Também é possível substituir o valor do preenchimento, cujo padrão é 0.

Fluxos de trabalho de treinamento

Processando várias épocas

A API tf.data oferece duas maneiras principais de processar várias épocas dos mesmos dados.

A maneira mais simples de iterar sobre um conjunto de dados em várias épocas é usar a transformação Dataset.repeat() . Primeiro, crie um conjunto de dados de dados titânicos:

 titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv")
titanic_lines = tf.data.TextLineDataset(titanic_file)
 
 def plot_batch_sizes(ds):
  batch_sizes = [batch.shape[0] for batch in ds]
  plt.bar(range(len(batch_sizes)), batch_sizes)
  plt.xlabel('Batch number')
  plt.ylabel('Batch size')
 

A aplicação da transformação Dataset.repeat() sem argumentos repetirá a entrada indefinidamente.

A transformação Dataset.repeat concatena seus argumentos sem sinalizar o final de uma época e o início da próxima. Por esse Dataset.batch um Dataset.batch aplicado após Dataset.repeat produzirá lotes que ultrapassam os limites da época:

 titanic_batches = titanic_lines.repeat(3).batch(128)
plot_batch_sizes(titanic_batches)
 

png

Se você precisar de uma separação de época clara, coloque Dataset.batch antes da repetição:

 titanic_batches = titanic_lines.batch(128).repeat(3)

plot_batch_sizes(titanic_batches)
 

png

Se você deseja executar uma computação personalizada (por exemplo, para coletar estatísticas) no final de cada época, é mais simples reiniciar a iteração do conjunto de dados em cada época:

 epochs = 3
dataset = titanic_lines.batch(128)

for epoch in range(epochs):
  for batch in dataset:
    print(batch.shape)
  print("End of epoch: ", epoch)
 
(128,)
(128,)
(128,)
(128,)
(116,)
End of epoch:  0
(128,)
(128,)
(128,)
(128,)
(116,)
End of epoch:  1
(128,)
(128,)
(128,)
(128,)
(116,)
End of epoch:  2

Baralhar aleatoriamente os dados de entrada

A transformação Dataset.shuffle() mantém um buffer de tamanho fixo e escolhe o próximo elemento uniformemente aleatoriamente nesse buffer.

Adicione um índice ao conjunto de dados para poder ver o efeito:

 lines = tf.data.TextLineDataset(titanic_file)
counter = tf.data.experimental.Counter()

dataset = tf.data.Dataset.zip((counter, lines))
dataset = dataset.shuffle(buffer_size=100)
dataset = dataset.batch(20)
dataset
 
<BatchDataset shapes: ((None,), (None,)), types: (tf.int64, tf.string)>

Como o tamanho do buffer_size é 100 e o tamanho do lote é 20, o primeiro lote não contém elementos com um índice acima de 120.

 n,line_batch = next(iter(dataset))
print(n.numpy())
 
[ 63  48 101  12 103  52   6  39   4   9  93  91   5  86  79  64  95  33
 102  50]

Como no Dataset.batch o pedido relativo ao Dataset.repeat importante.

Dataset.shuffle não sinaliza o final de uma época até que o buffer de reprodução aleatória esteja vazio. Portanto, um shuffle colocado antes da repetição mostrará todos os elementos de uma época antes de passar para a próxima:

 dataset = tf.data.Dataset.zip((counter, lines))
shuffled = dataset.shuffle(buffer_size=100).batch(10).repeat(2)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(60).take(5):
  print(n.numpy())
 
Here are the item ID's near the epoch boundary:

[613 609 624 553 608 583 493 617 611 610]
[217 508 579 601 319 616 606 549 618 623]
[416 567 404 622 283 458 503 602]
[ 87  68  56  16   6  62   1  89  58 106]
[98 80 43 10 67 44 19 34 13 57]

 shuffle_repeat = [n.numpy().mean() for n, line_batch in shuffled]
plt.plot(shuffle_repeat, label="shuffle().repeat()")
plt.ylabel("Mean item ID")
plt.legend()
 
<matplotlib.legend.Legend at 0x7fe0a00a1d68>

png

Mas uma repetição antes de um shuffle mistura os limites da época:

 dataset = tf.data.Dataset.zip((counter, lines))
shuffled = dataset.repeat(2).shuffle(buffer_size=100).batch(10)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(55).take(15):
  print(n.numpy())
 
Here are the item ID's near the epoch boundary:

[440  15   8 599 567  18 550   5  19  17]
[ 12 501 571 473 466  21 531 596 580 555]
[  3 573  38 563  25 416 595  29  46 602]
[485 566 561  16 331 615 386  28 609  41]
[611 622 575  10 589  61 598 527  52  35]
[ 55 597  42  23  13  47  11 505  68 582]
[612 613  75  43   7 392  74 452  82 509]
[  9  44  62 491  71 343  51 590  60  98]
[  6  95 619  86 625 537 617  85 465   0]
[ 88  27  92 101 109 111 104  24  36 113]
[103 118  79  53  70  40 121 100  65  33]
[562 588 124 125  64  84  83  67 610 130]
[  4 142 131  90 518 129 143 112   2 551]
[377  91 140  76  50  48 526 553 156 591]
[105 128  69 114  93 520 154  56 145 115]

 repeat_shuffle = [n.numpy().mean() for n, line_batch in shuffled]

plt.plot(shuffle_repeat, label="shuffle().repeat()")
plt.plot(repeat_shuffle, label="repeat().shuffle()")
plt.ylabel("Mean item ID")
plt.legend()
 
<matplotlib.legend.Legend at 0x7fe0582fbb70>

png

Pré-processamento de dados

A transformação Dataset.map(f) produz um novo conjunto de dados aplicando uma determinada função f a cada elemento do conjunto de dados de entrada. É baseado na função map() que é comumente aplicada a listas (e outras estruturas) em linguagens de programação funcional. A função f pega os objetos tf.Tensor que representam um único elemento na entrada e retorna os objetos tf.Tensor que representam um único elemento no novo conjunto de dados. Sua implementação usa operações padrão do TensorFlow para transformar um elemento em outro.

Esta seção aborda exemplos comuns de como usar o Dataset.map() .

Decodificando dados da imagem e redimensionando-os

Ao treinar uma rede neural em dados de imagem do mundo real, geralmente é necessário converter imagens de tamanhos diferentes em um tamanho comum, para que possam ser agrupadas em lotes em um tamanho fixo.

Recrie o conjunto de dados dos nomes de arquivos de flores:

 list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*'))
 

Escreva uma função que manipule os elementos do conjunto de dados.

 # Reads an image from a file, decodes it into a dense tensor, and resizes it
# to a fixed shape.
def parse_image(filename):
  parts = tf.strings.split(filename, os.sep)
  label = parts[-2]

  image = tf.io.read_file(filename)
  image = tf.image.decode_jpeg(image)
  image = tf.image.convert_image_dtype(image, tf.float32)
  image = tf.image.resize(image, [128, 128])
  return image, label
 

Teste se funciona.

 file_path = next(iter(list_ds))
image, label = parse_image(file_path)

def show(image, label):
  plt.figure()
  plt.imshow(image)
  plt.title(label.numpy().decode('utf-8'))
  plt.axis('off')

show(image, label)
 

png

Mapeie-o sobre o conjunto de dados.

 images_ds = list_ds.map(parse_image)

for image, label in images_ds.take(2):
  show(image, label)
 

png

png

Aplicando lógica Python arbitrária

Por motivos de desempenho, use as operações do TensorFlow para pré-processar seus dados sempre que possível. No entanto, às vezes é útil chamar bibliotecas Python externas ao analisar seus dados de entrada. Você pode usar a operação tf.py_function() em uma transformação Dataset.map() .

Por exemplo, se você deseja aplicar uma rotação aleatória, a tf.image módulo só tem tf.image.rot90 , o que não é muito útil para o aumento da imagem.

Para demonstrar a função tf.py_function , tente usar a função scipy.ndimage.rotate :

 import scipy.ndimage as ndimage

def random_rotate_image(image):
  image = ndimage.rotate(image, np.random.uniform(-30, 30), reshape=False)
  return image
 
 image, label = next(iter(images_ds))
image = random_rotate_image(image)
show(image, label)
 
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

png

Para usar esta função com o Dataset.map as mesmas advertências que se aplicam ao Dataset.from_generator , é necessário descrever as formas e os tipos de retorno ao aplicar a função:

 def tf_random_rotate_image(image, label):
  im_shape = image.shape
  [image,] = tf.py_function(random_rotate_image, [image], [tf.float32])
  image.set_shape(im_shape)
  return image, label
 
 rot_ds = images_ds.map(tf_random_rotate_image)

for image, label in rot_ds.take(2):
  show(image, label)
 
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).

png

png

Analisando mensagens de buffer de protocolo tf.Example

Muitos pipelines de entrada extraem tf.train.Example mensagens de buffer de protocolo de um formato TFRecord. Cada registro tf.train.Example contém um ou mais "recursos", e o pipeline de entrada normalmente converte esses recursos em tensores.

 fsns_test_file = tf.keras.utils.get_file("fsns.tfrec", "https://storage.googleapis.com/download.tensorflow.org/data/fsns-20160927/testdata/fsns-00000-of-00001")
dataset = tf.data.TFRecordDataset(filenames = [fsns_test_file])
dataset
 
<TFRecordDatasetV2 shapes: (), types: tf.string>

Você pode trabalhar com tf.train.Example fora de um tf.data.Dataset para entender os dados:

 raw_example = next(iter(dataset))
parsed = tf.train.Example.FromString(raw_example.numpy())

feature = parsed.features.feature
raw_img = feature['image/encoded'].bytes_list.value[0]
img = tf.image.decode_png(raw_img)
plt.imshow(img)
plt.axis('off')
_ = plt.title(feature["image/text"].bytes_list.value[0])
 

png

 raw_example = next(iter(dataset))
 
 def tf_parse(eg):
  example = tf.io.parse_example(
      eg[tf.newaxis], {
          'image/encoded': tf.io.FixedLenFeature(shape=(), dtype=tf.string),
          'image/text': tf.io.FixedLenFeature(shape=(), dtype=tf.string)
      })
  return example['image/encoded'][0], example['image/text'][0]
 
 img, txt = tf_parse(raw_example)
print(txt.numpy())
print(repr(img.numpy()[:20]), "...")
 
b'Rue Perreyon'
b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x02X' ...

 decoded = dataset.map(tf_parse)
decoded
 
<MapDataset shapes: ((), ()), types: (tf.string, tf.string)>
 image_batch, text_batch = next(iter(decoded.batch(10)))
image_batch.shape
 
TensorShape([10])

Janelas de séries temporais

Para um exemplo completo de séries temporais, consulte: Previsão de séries temporais .

Os dados de séries temporais geralmente são organizados com o eixo temporal intacto.

Use um Dataset.range simples para demonstrar:

 range_ds = tf.data.Dataset.range(100000)
 

Normalmente, os modelos baseados nesse tipo de dados desejam uma fatia de tempo contígua.

A abordagem mais simples seria agrupar os dados:

Usando batch

 batches = range_ds.batch(10, drop_remainder=True)

for batch in batches.take(5):
  print(batch.numpy())
 
[0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]
[40 41 42 43 44 45 46 47 48 49]

Ou, para fazer previsões densas um passo no futuro, você pode alterar os recursos e os rótulos em um passo em relação ao outro:

 def dense_1_step(batch):
  # Shift features and labels one step relative to each other.
  return batch[:-1], batch[1:]

predict_dense_1_step = batches.map(dense_1_step)

for features, label in predict_dense_1_step.take(3):
  print(features.numpy(), " => ", label.numpy())
 
[0 1 2 3 4 5 6 7 8]  =>  [1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18]  =>  [11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28]  =>  [21 22 23 24 25 26 27 28 29]

Para prever uma janela inteira em vez de um deslocamento fixo, você pode dividir os lotes em duas partes:

 batches = range_ds.batch(15, drop_remainder=True)

def label_next_5_steps(batch):
  return (batch[:-5],   # Take the first 5 steps
          batch[-5:])   # take the remainder

predict_5_steps = batches.map(label_next_5_steps)

for features, label in predict_5_steps.take(3):
  print(features.numpy(), " => ", label.numpy())
 
[0 1 2 3 4 5 6 7 8 9]  =>  [10 11 12 13 14]
[15 16 17 18 19 20 21 22 23 24]  =>  [25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]  =>  [40 41 42 43 44]

Para permitir alguma sobreposição entre os recursos de um lote e os rótulos de outro, use Dataset.zip :

 feature_length = 10
label_length = 5

features = range_ds.batch(feature_length, drop_remainder=True)
labels = range_ds.batch(feature_length).skip(1).map(lambda labels: labels[:-5])

predict_5_steps = tf.data.Dataset.zip((features, labels))

for features, label in predict_5_steps.take(3):
  print(features.numpy(), " => ", label.numpy())
 
[0 1 2 3 4 5 6 7 8 9]  =>  [10 11 12 13 14]
[10 11 12 13 14 15 16 17 18 19]  =>  [20 21 22 23 24]
[20 21 22 23 24 25 26 27 28 29]  =>  [30 31 32 33 34]

Usando window

Enquanto o Dataset.batch funciona, há situações em que você pode precisar de um controle mais preciso. O método Dataset.window fornece controle completo, mas requer alguns cuidados: retorna um Dataset de Datasets de Datasets de Datasets . Consulte Estrutura do conjunto de dados para obter detalhes.

 window_size = 5

windows = range_ds.window(window_size, shift=1)
for sub_ds in windows.take(5):
  print(sub_ds)
 
<_VariantDataset shapes: (), types: tf.int64>
<_VariantDataset shapes: (), types: tf.int64>
<_VariantDataset shapes: (), types: tf.int64>
<_VariantDataset shapes: (), types: tf.int64>
<_VariantDataset shapes: (), types: tf.int64>

O método Dataset.flat_map pode pegar um conjunto de dados de conjuntos de dados e achatá-lo em um único conjunto de dados:

  for x in windows.flat_map(lambda x: x).take(30):
   print(x.numpy(), end=' ')
 
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7fe0582dbbf8> and will run it as-is.
Cause: could not parse the source code:

for x in windows.flat_map(lambda x: x).take(30):

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7fe0582dbbf8> and will run it as-is.
Cause: could not parse the source code:

for x in windows.flat_map(lambda x: x).take(30):

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 5 6 7 8 9 

Em quase todos os casos, convém .batch o conjunto de dados primeiro:

 def sub_to_batch(sub):
  return sub.batch(window_size, drop_remainder=True)

for example in windows.flat_map(sub_to_batch).take(5):
  print(example.numpy())
 
[0 1 2 3 4]
[1 2 3 4 5]
[2 3 4 5 6]
[3 4 5 6 7]
[4 5 6 7 8]

Agora, você pode ver que o argumento shift controla quanto cada janela se move.

Juntando isso, você pode escrever esta função:

 def make_window_dataset(ds, window_size=5, shift=1, stride=1):
  windows = ds.window(window_size, shift=shift, stride=stride)

  def sub_to_batch(sub):
    return sub.batch(window_size, drop_remainder=True)

  windows = windows.flat_map(sub_to_batch)
  return windows

 
 ds = make_window_dataset(range_ds, window_size=10, shift = 5, stride=3)

for example in ds.take(10):
  print(example.numpy())
 
[ 0  3  6  9 12 15 18 21 24 27]
[ 5  8 11 14 17 20 23 26 29 32]
[10 13 16 19 22 25 28 31 34 37]
[15 18 21 24 27 30 33 36 39 42]
[20 23 26 29 32 35 38 41 44 47]
[25 28 31 34 37 40 43 46 49 52]
[30 33 36 39 42 45 48 51 54 57]
[35 38 41 44 47 50 53 56 59 62]
[40 43 46 49 52 55 58 61 64 67]
[45 48 51 54 57 60 63 66 69 72]

Então é fácil extrair rótulos, como antes:

 dense_labels_ds = ds.map(dense_1_step)

for inputs,labels in dense_labels_ds.take(3):
  print(inputs.numpy(), "=>", labels.numpy())
 
[ 0  3  6  9 12 15 18 21 24] => [ 3  6  9 12 15 18 21 24 27]
[ 5  8 11 14 17 20 23 26 29] => [ 8 11 14 17 20 23 26 29 32]
[10 13 16 19 22 25 28 31 34] => [13 16 19 22 25 28 31 34 37]

Reamostragem

Ao trabalhar com um conjunto de dados com muito desequilíbrio de classe, convém reamostrar o conjunto de dados. tf.data fornece dois métodos para fazer isso. O conjunto de dados de fraude de cartão de crédito é um bom exemplo desse tipo de problema.

 zip_path = tf.keras.utils.get_file(
    origin='https://storage.googleapis.com/download.tensorflow.org/data/creditcard.zip',
    fname='creditcard.zip',
    extract=True)

csv_path = zip_path.replace('.zip', '.csv')
 
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/creditcard.zip
69156864/69155632 [==============================] - 10s 0us/step

 creditcard_ds = tf.data.experimental.make_csv_dataset(
    csv_path, batch_size=1024, label_name="Class",
    # Set the column types: 30 floats and an int.
    column_defaults=[float()]*30+[int()])
 

Agora, verifique a distribuição das classes, ela é altamente distorcida:

 def count(counts, batch):
  features, labels = batch
  class_1 = labels == 1
  class_1 = tf.cast(class_1, tf.int32)

  class_0 = labels == 0
  class_0 = tf.cast(class_0, tf.int32)

  counts['class_0'] += tf.reduce_sum(class_0)
  counts['class_1'] += tf.reduce_sum(class_1)

  return counts
 
 counts = creditcard_ds.take(10).reduce(
    initial_state={'class_0': 0, 'class_1': 0},
    reduce_func = count)

counts = np.array([counts['class_0'].numpy(),
                   counts['class_1'].numpy()]).astype(np.float32)

fractions = counts/counts.sum()
print(fractions)
 
[0.996 0.004]

Uma abordagem comum ao treinamento com um conjunto de dados desequilibrado é equilibrá-lo. tf.data inclui alguns métodos que permitem esse fluxo de trabalho:

Amostragem de conjuntos de dados

Uma abordagem para reamostrar um conjunto de dados é usar sample_from_datasets . Isso é mais aplicável quando você tem um data.Dataset separado para cada classe.

Aqui, basta usar o filtro para gerá-los a partir dos dados de fraude do cartão de crédito:

 negative_ds = (
  creditcard_ds
    .unbatch()
    .filter(lambda features, label: label==0)
    .repeat())
positive_ds = (
  creditcard_ds
    .unbatch()
    .filter(lambda features, label: label==1)
    .repeat())
 
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7fe0a01fd1e0> and will run it as-is.
Cause: could not parse the source code:

    .filter(lambda features, label: label==0)

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7fe0a01fd1e0> and will run it as-is.
Cause: could not parse the source code:

    .filter(lambda features, label: label==0)

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7fe058159620> and will run it as-is.
Cause: could not parse the source code:

    .filter(lambda features, label: label==1)

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7fe058159620> and will run it as-is.
Cause: could not parse the source code:

    .filter(lambda features, label: label==1)

This error may be avoided by creating the lambda in a standalone statement.

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert

 for features, label in positive_ds.batch(10).take(1):
  print(label.numpy())
 
[1 1 1 1 1 1 1 1 1 1]

Para usar tf.data.experimental.sample_from_datasets passe os conjuntos de dados e o peso de cada um:

 balanced_ds = tf.data.experimental.sample_from_datasets(
    [negative_ds, positive_ds], [0.5, 0.5]).batch(10)
 

Agora, o conjunto de dados produz exemplos de cada classe com probabilidade 50/50:

 for features, labels in balanced_ds.take(10):
  print(labels.numpy())
 
[0 0 0 1 0 0 1 1 0 0]
[1 1 0 0 1 1 0 0 0 1]
[1 1 0 0 0 0 0 0 1 1]
[1 0 0 1 1 0 0 0 1 0]
[1 1 0 0 0 1 1 0 0 1]
[0 0 1 1 1 0 0 1 1 0]
[0 0 0 1 0 0 0 1 1 1]
[1 1 0 1 0 0 1 0 1 1]
[0 1 0 0 1 1 0 0 0 1]
[0 1 0 0 1 0 0 1 1 0]

Reamostragem de rejeição

Um problema com a abordagem experimental.sample_from_datasets acima é que ela precisa de um tf.data.Dataset separado por classe. O uso do Dataset.filter funciona, mas resulta em todos os dados sendo carregados duas vezes.

A função data.experimental.rejection_resample pode ser aplicada a um conjunto de dados para reequilibrá-lo, enquanto o carrega apenas uma vez. Os elementos serão descartados do conjunto de dados para obter equilíbrio.

data.experimental.rejection_resample usa um argumento class_func . Esse class_func é aplicado a cada elemento do conjunto de dados e é usado para determinar a qual classe um exemplo pertence para fins de balanceamento.

Os elementos de creditcard_ds já são pares (features, label) . Portanto, o class_func só precisa retornar esses rótulos:

 def class_func(features, label):
  return label
 

O reamostrador também precisa de uma distribuição de destino e, opcionalmente, uma estimativa de distribuição inicial:

 resampler = tf.data.experimental.rejection_resample(
    class_func, target_dist=[0.5, 0.5], initial_dist=fractions)
 

O reamostrador lida com exemplos individuais, portanto, você deve unbatch o conjunto de dados antes de aplicar o reamostrador:

 resample_ds = creditcard_ds.unbatch().apply(resampler).batch(10)
 
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/data/experimental/ops/resampling.py:156: Print (from tensorflow.python.ops.logging_ops) is deprecated and will be removed after 2018-08-20.
Instructions for updating:
Use tf.print instead of tf.Print. Note that tf.print returns a no-output operator that directly prints the output. Outside of defuns or eager mode, this operator will not be executed unless it is directly specified in session.run or used as a control dependency for other operators. This is only a concern in graph mode. Below is an example of how to ensure tf.print executes in graph mode:


O retorno do class_func cria pares (class, example) partir da saída do class_func . Nesse caso, o example já era um par (feature, label) ; portanto, use map para descartar a cópia extra das etiquetas:

 balanced_ds = resample_ds.map(lambda extra_label, features_and_label: features_and_label)
 

Agora, o conjunto de dados produz exemplos de cada classe com probabilidade 50/50:

 for features, labels in balanced_ds.take(10):
  print(labels.numpy())
 
[1 0 1 1 1 1 0 1 1 1]
[0 0 1 1 1 0 1 0 1 1]
[1 0 0 1 0 0 0 0 0 1]
[1 1 1 1 1 1 0 1 1 1]
[1 1 0 1 0 0 0 0 1 0]
[1 0 0 0 1 0 1 0 1 0]
[0 0 0 0 0 0 1 0 0 0]
[0 0 0 1 1 0 0 1 0 1]
[0 0 1 1 1 1 0 0 1 1]
[0 0 1 1 0 1 0 1 1 0]

Ponto de verificação do iterador

O Tensorflow suporta a tomada de pontos de verificação para que, quando o processo de treinamento for reiniciado, ele possa restaurar o ponto de verificação mais recente para recuperar a maior parte de seu progresso. Além de verificar as variáveis ​​do modelo, você também pode verificar o progresso do iterador do conjunto de dados. Isso pode ser útil se você tiver um conjunto de dados grande e não quiser iniciar o conjunto de dados desde o início em cada reinicialização. Observe, no entanto, que os pontos de verificação do iterador podem ser grandes, pois transformações como shuffle e prefetch - prefetch requerem elementos de buffer no iterador.

Para incluir seu iterador em um ponto de verificação, passe o iterador para o construtor tf.train.Checkpoint .

 range_ds = tf.data.Dataset.range(20)

iterator = iter(range_ds)
ckpt = tf.train.Checkpoint(step=tf.Variable(0), iterator=iterator)
manager = tf.train.CheckpointManager(ckpt, '/tmp/my_ckpt', max_to_keep=3)

print([next(iterator).numpy() for _ in range(5)])

save_path = manager.save()

print([next(iterator).numpy() for _ in range(5)])

ckpt.restore(manager.latest_checkpoint)

print([next(iterator).numpy() for _ in range(5)])
 
[0, 1, 2, 3, 4]
[5, 6, 7, 8, 9]
[5, 6, 7, 8, 9]

Usando APIs de alto nível

tf.keras

A API tf.keras simplifica muitos aspectos da criação e execução de modelos de aprendizado de máquina. Suas APIs .fit() e .evaluate() e .predict() suportam conjuntos de dados como entradas. Aqui está uma configuração rápida do conjunto de dados e do modelo:

 train, test = tf.keras.datasets.fashion_mnist.load_data()

images, labels = train
images = images/255.0
labels = labels.astype(np.int32)
 
 fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels))
fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32)

model = tf.keras.Sequential([
  tf.keras.layers.Flatten(),
  tf.keras.layers.Dense(10)
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 
              metrics=['accuracy'])
 

Passar um conjunto de dados de pares (feature, label) é tudo o que é necessário para Model.fit e Model.evaluate :

 model.fit(fmnist_train_ds, epochs=2)
 
Epoch 1/2
WARNING:tensorflow:Layer flatten is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2.  The layer has dtype float32 because it's dtype defaults to floatx.

If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.

To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.

1875/1875 [==============================] - 4s 2ms/step - loss: 0.6031 - accuracy: 0.7937
Epoch 2/2
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4620 - accuracy: 0.8416

<tensorflow.python.keras.callbacks.History at 0x7fe13f9ed3c8>

Se você passar um conjunto de dados infinito, por exemplo, chamando Dataset.repeat() , você também precisará passar o argumento steps_per_epoch :

 model.fit(fmnist_train_ds.repeat(), epochs=2, steps_per_epoch=20)
 
Epoch 1/2
20/20 [==============================] - 0s 2ms/step - loss: 0.4050 - accuracy: 0.8672
Epoch 2/2
20/20 [==============================] - 0s 2ms/step - loss: 0.4077 - accuracy: 0.8703

<tensorflow.python.keras.callbacks.History at 0x7fe0ca13edd8>

Para avaliação, você pode passar o número de etapas da avaliação:

 loss, accuracy = model.evaluate(fmnist_train_ds)
print("Loss :", loss)
print("Accuracy :", accuracy)
 
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4474 - accuracy: 0.8439
Loss : 0.4474281072616577
Accuracy : 0.843916654586792

Para conjuntos de dados longos, defina o número de etapas para avaliar:

 loss, accuracy = model.evaluate(fmnist_train_ds.repeat(), steps=10)
print("Loss :", loss)
print("Accuracy :", accuracy)
 
10/10 [==============================] - 0s 2ms/step - loss: 0.5262 - accuracy: 0.8156
Loss : 0.5262183547019958
Accuracy : 0.815625011920929

Os rótulos não são necessários ao chamar Model.predict .

 predict_ds = tf.data.Dataset.from_tensor_slices(images).batch(32)
result = model.predict(predict_ds, steps = 10)
print(result.shape)
 
(320, 10)

Mas os rótulos serão ignorados se você passar um conjunto de dados que os contenha:

 result = model.predict(fmnist_train_ds, steps = 10)
print(result.shape)
 
(320, 10)

tf.estimator

Para usar um Dataset na input_fn de um tf.estimator.Estimator , basta retornar o Dataset de Dataset partir de input_fn e a estrutura cuidará de consumir seus elementos para você. Por exemplo:

 import tensorflow_datasets as tfds

def train_input_fn():
  titanic = tf.data.experimental.make_csv_dataset(
      titanic_file, batch_size=32,
      label_name="survived")
  titanic_batches = (
      titanic.cache().repeat().shuffle(500)
      .prefetch(tf.data.experimental.AUTOTUNE))
  return titanic_batches
 
 embark = tf.feature_column.categorical_column_with_hash_bucket('embark_town', 32)
cls = tf.feature_column.categorical_column_with_vocabulary_list('class', ['First', 'Second', 'Third']) 
age = tf.feature_column.numeric_column('age')
 
 import tempfile
model_dir = tempfile.mkdtemp()
model = tf.estimator.LinearClassifier(
    model_dir=model_dir,
    feature_columns=[embark, cls, age],
    n_classes=2
)
 
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpefmfuc4o', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}

 model = model.train(input_fn=train_input_fn, steps=100)
 
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/ops/resource_variable_ops.py:1666: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/feature_column/feature_column_v2.py:540: Layer.add_variable (from tensorflow.python.keras.engine.base_layer_v1) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.add_weight` method instead.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:144: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpefmfuc4o/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 100...
INFO:tensorflow:Saving checkpoints for 100 into /tmp/tmpefmfuc4o/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 100...
INFO:tensorflow:Loss for final step: 0.58668363.

 result = model.evaluate(train_input_fn, steps=10)

for key, value in result.items():
  print(key, ":", value)
 
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2020-07-23T01:23:29Z
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpefmfuc4o/model.ckpt-100
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.83507s
INFO:tensorflow:Finished evaluation at 2020-07-23-01:23:30
INFO:tensorflow:Saving dict for global step 100: accuracy = 0.675, accuracy_baseline = 0.58125, auc = 0.71750116, auc_precision_recall = 0.6480325, average_loss = 0.64111984, global_step = 100, label/mean = 0.41875, loss = 0.64111984, precision = 0.85714287, prediction/mean = 0.30204886, recall = 0.26865673
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 100: /tmp/tmpefmfuc4o/model.ckpt-100
accuracy : 0.675
accuracy_baseline : 0.58125
auc : 0.71750116
auc_precision_recall : 0.6480325
average_loss : 0.64111984
label/mean : 0.41875
loss : 0.64111984
precision : 0.85714287
prediction/mean : 0.30204886
recall : 0.26865673
global_step : 100

 for pred in model.predict(train_input_fn):
  for key, value in pred.items():
    print(key, ":", value)
  break
 
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpefmfuc4o/model.ckpt-100
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
logits : [-0.5965]
logistic : [0.3551]
probabilities : [0.6449 0.3551]
class_ids : [0]
classes : [b'0']
all_class_ids : [0 1]
all_classes : [b'0' b'1']