يوم مجتمع ML هو 9 نوفمبر! الانضمام إلينا للحصول على التحديثات من TensorFlow، JAX، وأكثر معرفة المزيد

قارئ أباتشي ORC

عرض على TensorFlow.org تشغيل في Google Colab عرض على جيثب تحميل دفتر

ملخص

Apache ORC هو تنسيق تخزين عمودي شائع. توفر حزمة tensorflow الإعلام والتوعية وتطبيق الافتراضي قراءة أباتشي ORC الملفات.

يثبت

قم بتثبيت الحزم المطلوبة ، وأعد تشغيل وقت التشغيل

pip install tensorflow-io
import tensorflow as tf
import tensorflow_io as tfio
2021-07-30 12:26:35.624072: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcudart.so.11.0

قم بتنزيل نموذج ملف مجموعة البيانات في ORC

مجموعة البيانات التي ستستخدمها هنا هو مجموعة البيانات ايريس من UCI. تحتوي مجموعة البيانات على 3 فئات من 50 حالة لكل منها ، حيث تشير كل فئة إلى نوع من نبات القزحية. يحتوي على 4 سمات: (1) طول سيبال ، (2) عرض سيبال ، (3) طول البتلة ، (4) عرض بتلة ، ويحتوي العمود الأخير على تسمية الفئة.

curl -OL https://github.com/tensorflow/io/raw/master/tests/test_orc/iris.orc
ls -l iris.orc
% Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   144  100   144    0     0   1180      0 --:--:-- --:--:-- --:--:--  1180
100  3328  100  3328    0     0  13419      0 --:--:-- --:--:-- --:--:--     0
-rw-rw-r-- 1 kbuilder kokoro 3328 Jul 30 12:26 iris.orc

أنشئ مجموعة بيانات من الملف

dataset = tfio.IODataset.from_orc("iris.orc", capacity=15).batch(1)
2021-07-30 12:26:37.779732: I tensorflow_io/core/kernels/cpu_check.cc:128] Your CPU supports instructions that this TensorFlow IO binary was not compiled to use: AVX2 AVX512F FMA
2021-07-30 12:26:37.887808: I tensorflow/stream_executor/platform/default/dso_loader.cc:53] Successfully opened dynamic library libcuda.so.1
2021-07-30 12:26:37.979733: E tensorflow/stream_executor/cuda/cuda_driver.cc:328] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2021-07-30 12:26:37.979781: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (kokoro-gcp-ubuntu-prod-1874323723): /proc/driver/nvidia/version does not exist
2021-07-30 12:26:37.980766: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-07-30 12:26:37.984832: I tensorflow_io/core/kernels/orc/orc_kernels.cc:49] ORC file schema:struct<sepal_length:float,sepal_width:float,petal_length:float,petal_width:float,species:string>

افحص مجموعة البيانات:

for item in dataset.take(1):
    print(item)
(<tf.Tensor: shape=(1,), dtype=float32, numpy=array([5.1], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=float32, numpy=array([3.5], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.4], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.2], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=string, numpy=array([b'setosa'], dtype=object)>)
2021-07-30 12:26:38.167628: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
2021-07-30 12:26:38.168103: I tensorflow/core/platform/profile_utils/cpu_utils.cc:114] CPU Frequency: 2000170000 Hz

دعنا نتعرف على مثال شامل للتدريب على نموذج tf.keras باستخدام مجموعة بيانات ORC استنادًا إلى مجموعة بيانات القزحية.

معالجة البيانات

قم بتكوين الأعمدة التي تمثل المعالم وأي عمود هو التسمية:

feature_cols = ["sepal_length", "sepal_width", "petal_length", "petal_width"]
label_cols = ["species"]

# select feature columns
feature_dataset = tfio.IODataset.from_orc("iris.orc", columns=feature_cols)
# select label columns
label_dataset = tfio.IODataset.from_orc("iris.orc", columns=label_cols)
2021-07-30 12:26:38.222712: I tensorflow_io/core/kernels/orc/orc_kernels.cc:49] ORC file schema:struct<sepal_length:float,sepal_width:float,petal_length:float,petal_width:float,species:string>
2021-07-30 12:26:38.286470: I tensorflow_io/core/kernels/orc/orc_kernels.cc:49] ORC file schema:struct<sepal_length:float,sepal_width:float,petal_length:float,petal_width:float,species:string>

وظيفة استخدام لتعيين الأنواع لتعويم الأرقام لتدريب النموذج:

vocab_init = tf.lookup.KeyValueTensorInitializer(
    keys=tf.constant(["virginica", "versicolor", "setosa"]),
    values=tf.constant([0, 1, 2], dtype=tf.int64))
vocab_table = tf.lookup.StaticVocabularyTable(
    vocab_init,
    num_oov_buckets=4)
label_dataset = label_dataset.map(vocab_table.lookup)
dataset = tf.data.Dataset.zip((feature_dataset, label_dataset))
dataset = dataset.batch(1)

def pack_features_vector(features, labels):
    """Pack the features into a single array."""
    features = tf.stack(list(features), axis=1)
    return features, labels

dataset = dataset.map(pack_features_vector)

بناء النموذج وتجميعه وتدريبه

أخيرًا ، أنت جاهز لبناء النموذج وتدريبه! ستقوم ببناء نموذج keras من 3 طبقات للتنبؤ بفئة نبات القزحية من مجموعة البيانات التي قمت بمعالجتها للتو.

model = tf.keras.Sequential(
    [
        tf.keras.layers.Dense(
            10, activation=tf.nn.relu, input_shape=(4,)
        ),
        tf.keras.layers.Dense(10, activation=tf.nn.relu),
        tf.keras.layers.Dense(3),
    ]
)

model.compile(optimizer="adam", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"])
model.fit(dataset, epochs=5)
Epoch 1/5
150/150 [==============================] - 0s 1ms/step - loss: 1.3479 - accuracy: 0.4800
Epoch 2/5
150/150 [==============================] - 0s 920us/step - loss: 0.8355 - accuracy: 0.6000
Epoch 3/5
150/150 [==============================] - 0s 951us/step - loss: 0.6370 - accuracy: 0.7733
Epoch 4/5
150/150 [==============================] - 0s 954us/step - loss: 0.5276 - accuracy: 0.7933
Epoch 5/5
150/150 [==============================] - 0s 940us/step - loss: 0.4766 - accuracy: 0.7933
<tensorflow.python.keras.callbacks.History at 0x7f263b830850>