Assistez au symposium Women in ML le 7 décembre Inscrivez-vous maintenant

Enregistrer et charger un modèle à l'aide d'une stratégie de distribution

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHub Télécharger le cahier

Aperçu

Il est courant d'enregistrer et de charger un modèle pendant l'entraînement. Il existe deux ensembles d'API pour enregistrer et charger un modèle Keras : une API de haut niveau et une API de bas niveau. Ce tutoriel montre comment vous pouvez utiliser les API SavedModel lors de l'utilisation tf.distribute.Strategy . Pour en savoir plus sur SavedModel et la sérialisation en général, veuillez lire le guide du modèle enregistré et le guide de sérialisation du modèle Keras . Commençons par un exemple simple :

Dépendances d'importation :

import tensorflow_datasets as tfds

import tensorflow as tf

Préparez les données et le modèle à l'aide tf.distribute.Strategy :

mirrored_strategy = tf.distribute.MirroredStrategy()

def get_data():
  datasets, ds_info = tfds.load(name='mnist', with_info=True, as_supervised=True)
  mnist_train, mnist_test = datasets['train'], datasets['test']

  BUFFER_SIZE = 10000

  BATCH_SIZE_PER_REPLICA = 64
  BATCH_SIZE = BATCH_SIZE_PER_REPLICA * mirrored_strategy.num_replicas_in_sync

  def scale(image, label):
    image = tf.cast(image, tf.float32)
    image /= 255

    return image, label

  train_dataset = mnist_train.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
  eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)

  return train_dataset, eval_dataset

def get_model():
  with mirrored_strategy.scope():
    model = tf.keras.Sequential([
        tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
        tf.keras.layers.MaxPooling2D(),
        tf.keras.layers.Flatten(),
        tf.keras.layers.Dense(64, activation='relu'),
        tf.keras.layers.Dense(10)
    ])

    model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  optimizer=tf.keras.optimizers.Adam(),
                  metrics=[tf.metrics.SparseCategoricalAccuracy()])
    return model
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

Entraînez le modèle :

model = get_model()
train_dataset, eval_dataset = get_data()
model.fit(train_dataset, epochs=2)
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
Epoch 1/2
2022-01-26 05:41:11.916000: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
938/938 [==============================] - 11s 5ms/step - loss: 0.1873 - sparse_categorical_accuracy: 0.9451
Epoch 2/2
938/938 [==============================] - 3s 3ms/step - loss: 0.0641 - sparse_categorical_accuracy: 0.9807
<keras.callbacks.History at 0x7f3b900396d0>

Enregistrer et charger le modèle

Maintenant que vous disposez d'un modèle simple avec lequel travailler, examinons les API de sauvegarde/chargement. Deux ensembles d'API sont disponibles :

Les API Keras

Voici un exemple d'enregistrement et de chargement d'un modèle avec les API Keras :

keras_model_path = "/tmp/keras_save"
model.save(keras_model_path)
2022-01-26 05:41:26.593570: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/keras_save/assets
INFO:tensorflow:Assets written to: /tmp/keras_save/assets

Restaurez le modèle sans tf.distribute.Strategy :

restored_keras_model = tf.keras.models.load_model(keras_model_path)
restored_keras_model.fit(train_dataset, epochs=2)
Epoch 1/2
938/938 [==============================] - 3s 3ms/step - loss: 0.0476 - sparse_categorical_accuracy: 0.9859
Epoch 2/2
938/938 [==============================] - 3s 3ms/step - loss: 0.0334 - sparse_categorical_accuracy: 0.9895
<keras.callbacks.History at 0x7f3b187b7150>

Après avoir restauré le modèle, vous pouvez continuer à vous entraîner dessus, même sans avoir besoin d'appeler à nouveau compile() , car il est déjà compilé avant l'enregistrement. Le modèle est enregistré au format de SavedModel standard de TensorFlow. Pour plus d'informations, veuillez vous référer au guide du format saved_model .

Maintenant, chargez le modèle et entraînez-le à l'aide d'un tf.distribute.Strategy :

another_strategy = tf.distribute.OneDeviceStrategy("/cpu:0")
with another_strategy.scope():
  restored_keras_model_ds = tf.keras.models.load_model(keras_model_path)
  restored_keras_model_ds.fit(train_dataset, epochs=2)
Epoch 1/2
2022-01-26 05:41:33.036733: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
2022-01-26 05:41:33.083001: W tensorflow/core/framework/dataset.cc:768] Input of GeneratorDatasetOp::Dataset will not be optimized because the dataset does not implement the AsGraphDefInternal() method needed to apply optimizations.
938/938 [==============================] - 10s 10ms/step - loss: 0.0474 - sparse_categorical_accuracy: 0.9860
Epoch 2/2
938/938 [==============================] - 10s 10ms/step - loss: 0.0327 - sparse_categorical_accuracy: 0.9903

Comme vous pouvez le voir, le chargement fonctionne comme prévu avec tf.distribute.Strategy . La stratégie utilisée ici ne doit pas nécessairement être la même que celle utilisée avant l'enregistrement.

Les API tf.saved_model

Examinons maintenant les API de niveau inférieur. L'enregistrement du modèle est similaire à l'API keras :

model = get_model()  # get a fresh model
saved_model_path = "/tmp/tf_save"
tf.saved_model.save(model, saved_model_path)
INFO:tensorflow:Assets written to: /tmp/tf_save/assets
INFO:tensorflow:Assets written to: /tmp/tf_save/assets

Le chargement peut être fait avec tf.saved_model.load() . Cependant, comme il s'agit d'une API qui se trouve au niveau inférieur (et a donc un plus large éventail de cas d'utilisation), elle ne renvoie pas de modèle Keras. Au lieu de cela, il renvoie un objet contenant des fonctions pouvant être utilisées pour effectuer des inférences. Par example:

DEFAULT_FUNCTION_KEY = "serving_default"
loaded = tf.saved_model.load(saved_model_path)
inference_func = loaded.signatures[DEFAULT_FUNCTION_KEY]

L'objet chargé peut contenir plusieurs fonctions, chacune associée à une touche. Le "serving_default" est la clé par défaut pour la fonction d'inférence avec un modèle Keras enregistré. Pour faire une inférence avec cette fonction :

predict_dataset = eval_dataset.map(lambda image, label: image)
for batch in predict_dataset.take(1):
  print(inference_func(batch))
{'dense_3': <tf.Tensor: shape=(64, 10), dtype=float32, numpy=
array([[-1.18789300e-01, -1.78404614e-01,  4.92432676e-02,
        -9.37875658e-02,  1.14302970e-01, -8.99422392e-02,
         9.47709680e-02, -7.75382966e-02,  4.04430032e-02,
         2.41404288e-02],
       [-2.35370561e-01, -3.39397341e-02,  2.73427293e-02,
        -1.08200148e-01,  5.10682352e-02,  1.36142194e-01,
         9.28785652e-02, -5.35808355e-02,  2.56292164e-01,
         1.05301209e-01],
       [-1.91031799e-01, -7.72745535e-02, -7.23153427e-02,
        -1.99329913e-01, -7.45072216e-02,  2.42738128e-02,
         2.07733169e-01, -3.15396488e-03,  4.95976806e-02,
         2.14848563e-01],
       [-9.82482210e-02, -6.13910556e-02,  1.00815810e-01,
        -1.87558904e-01,  1.14685424e-01,  1.53835595e-01,
         1.85714245e-01, -8.74890238e-02,  1.07493028e-01,
         1.57510787e-02],
       [-8.56257528e-02,  3.23683321e-02, -3.66768315e-02,
        -1.47201523e-01, -5.31517603e-02,  1.52744055e-02,
         1.69184029e-01, -5.42814359e-02,  1.11524366e-01,
         5.65215349e-02],
       [-1.50604844e-01, -7.87255913e-03,  1.26651973e-01,
        -1.24476865e-01,  6.94983900e-02,  4.27672639e-03,
         1.86136231e-01, -4.54714149e-03,  9.12746191e-02,
         6.12779632e-02],
       [-2.79157639e-01, -4.61089313e-02,  2.51544192e-02,
        -1.79003477e-01,  3.83432880e-02,  2.05054253e-01,
        -8.25636461e-03, -8.25546682e-03,  2.41342247e-01,
         8.24805871e-02],
       [-1.42795354e-01,  6.54597580e-02,  2.05058958e-02,
        -1.28471941e-01,  1.10977650e-01,  4.51317504e-02,
         2.44124904e-01,  1.90523565e-02,  3.11958641e-02,
         6.49511665e-02],
       [-1.33037239e-01, -2.72594951e-02,  8.09026062e-02,
        -1.95883229e-01,  1.84634060e-01,  1.00822970e-01,
         4.40884084e-02, -6.43826872e-02,  1.47807434e-01,
        -1.92791894e-02],
       [-1.43770471e-01, -2.53150351e-02,  4.18904647e-02,
        -1.02573663e-01,  6.15917407e-02,  7.95702711e-02,
         9.27314460e-02, -4.31537181e-02,  4.59018350e-02,
         1.02965936e-01],
       [-1.90395206e-01,  2.93233991e-03,  1.48900077e-02,
        -1.15877971e-01,  1.06598288e-02,  1.40121073e-01,
         6.86443001e-02, -4.61921766e-02,  1.27470195e-01,
         6.73005953e-02],
       [-2.60747373e-01, -1.45188004e-01,  7.10044056e-04,
        -1.04602516e-01,  5.00324890e-02,  2.96664417e-01,
         8.57191086e-02,  6.65097907e-02,  1.31302923e-01,
        -1.84605196e-02],
       [-1.62942797e-01, -3.63466889e-02, -1.33987352e-01,
        -1.34576231e-01, -8.19503814e-02,  1.30840242e-02,
         6.16783127e-02, -3.64837795e-02,  3.18005830e-02,
         1.98420882e-01],
       [-1.25772715e-01, -6.94367215e-02, -1.35144517e-02,
        -6.30265176e-02,  8.36028308e-02,  2.96559408e-02,
         2.19864860e-01, -7.08417147e-02,  4.76131588e-02,
         1.15781695e-01],
       [-1.55139655e-01, -1.27863720e-01,  9.67459157e-02,
        -1.48635745e-01,  1.25129193e-01,  4.04443927e-02,
         2.94884086e-01, -7.66484886e-02,  1.18753463e-01,
         2.93397382e-02],
       [-1.59221828e-01, -9.30457860e-02,  9.18259323e-02,
        -1.72857821e-01,  8.09611157e-02,  1.11391053e-01,
         1.66679412e-01,  3.52456123e-02,  9.05358568e-02,
         9.89414975e-02],
       [-2.01425552e-01, -4.67008501e-02, -1.62331611e-02,
        -9.73629057e-02,  1.36456266e-01,  1.30628154e-01,
         1.53577864e-01, -6.73157908e-03,  9.31103677e-02,
         1.50734074e-02],
       [-1.29348308e-01, -3.03804129e-03,  2.82487050e-02,
        -2.02886015e-01,  7.09105879e-02,  1.74542382e-01,
         2.57992335e-02, -1.63579211e-02,  2.30892301e-02,
         6.69767857e-02],
       [-1.56857669e-01,  5.46110943e-02, -5.93251809e-02,
        -1.04585059e-01,  2.61763521e-02,  1.43062070e-01,
         1.57771498e-01, -6.19823262e-02,  3.59585434e-02,
         6.62322640e-02],
       [-8.64257440e-02, -1.33483298e-03,  7.46414512e-02,
        -1.82848468e-01,  1.21074423e-01,  1.55276239e-01,
         1.46483868e-01, -6.22515939e-03,  1.91641584e-01,
        -9.95825827e-02],
       [-2.52117336e-01, -6.92471862e-02,  1.09911412e-01,
        -3.73112522e-02,  3.76211852e-03,  5.23591004e-02,
         9.16506499e-02,  6.80204183e-02, -4.27842364e-02,
         7.91264027e-02],
       [-2.11018056e-01,  5.97522780e-03,  8.47486481e-02,
        -7.27925971e-02,  9.36664082e-03,  1.62506998e-01,
         5.32426499e-02,  1.78599171e-02, -2.30420940e-02,
         4.07365486e-02],
       [-1.35342121e-01, -4.06659022e-02, -2.09493563e-02,
        -1.64699793e-01,  8.35808069e-02,  7.68100768e-02,
        -7.14773983e-02, -3.43702435e-02,  9.47649628e-02,
         9.36352089e-02],
       [-1.20486066e-01,  3.77080180e-02,  1.14158325e-01,
        -6.50681928e-02,  1.03382617e-02,  1.17891498e-01,
         1.13154747e-01, -1.49052702e-02,  1.28893867e-01,
         1.12219512e-01],
       [-2.23867983e-01, -9.79400948e-02,  7.37103820e-02,
        -1.05197895e-02,  3.75595838e-02,  1.80490598e-01,
         6.83145374e-02, -3.09509300e-02,  1.42565176e-01,
         8.05927664e-02],
       [-2.32092351e-01, -3.42734642e-02, -5.15977889e-02,
        -1.75458089e-01,  1.46448284e-01,  1.80426955e-01,
         1.52164772e-01, -2.57370695e-02,  1.26812875e-01,
         1.22049123e-01],
       [-9.45013613e-02,  5.85526973e-02,  1.47456676e-02,
        -4.40606587e-02,  4.86647561e-02,  6.28624633e-02,
         3.69989276e-02, -3.68277319e-02,  3.56127135e-02,
         3.10502797e-02],
       [-1.02712311e-01,  3.16979140e-02,  1.88253060e-01,
        -5.99608906e-02,  3.73450294e-02,  6.38176724e-02,
         1.12240583e-01,  2.42183693e-02,  1.45670772e-02,
        -9.52028483e-03],
       [-1.62333213e-02, -1.42737105e-02, -5.79352975e-02,
        -1.01807326e-01, -7.93362781e-03, -7.22003728e-02,
         1.49934232e-01, -1.19943202e-01,  9.22369361e-02,
         1.46321565e-01],
       [-1.32534593e-01,  1.18380897e-02,  2.23980099e-03,
        -9.28303748e-02, -2.20538303e-02,  7.68908709e-02,
         5.29715866e-02, -3.43324393e-02, -1.27909705e-02,
        -7.04141408e-02],
       [-8.10261145e-02, -8.95578321e-03,  3.96864787e-02,
        -1.21861629e-01,  7.98310041e-02,  1.56087667e-01,
         9.11872089e-02, -2.29295418e-02,  5.64432219e-02,
        -3.55931222e-02],
       [-1.76416740e-01,  1.12043694e-02, -1.80068091e-02,
        -1.88012689e-01,  8.68914276e-02,  1.57958359e-01,
         5.77907935e-02, -2.12088451e-02,  5.33877537e-02,
         2.19271183e-02],
       [-2.70012528e-01, -1.26611829e-01,  3.10387388e-02,
        -7.24840909e-02,  1.03253610e-01,  8.91268626e-02,
         1.38662308e-01, -6.25240132e-02,  2.36210316e-01,
         1.40534222e-01],
       [-8.52961093e-02, -1.15273651e-02, -2.88792588e-02,
        -2.01282576e-02,  5.43357767e-02,  7.14191943e-02,
         3.46604213e-02, -6.00920171e-02,  5.11362031e-02,
         3.58160883e-02],
       [-1.63262367e-01,  2.44849995e-02,  3.81964818e-02,
        -3.93010303e-02,  3.95263731e-03,  9.11088511e-02,
         3.88236046e-02,  1.33745335e-02,  1.00076631e-01,
         6.05135933e-02],
       [-3.01809371e-01, -1.58440098e-01,  4.65333983e-02,
        -1.63946241e-01, -6.42775744e-02,  3.93286347e-04,
         2.82839835e-01, -8.93663988e-02,  1.97781295e-01,
         2.87044942e-01],
       [-2.15368003e-01, -4.83291782e-02, -8.29075277e-03,
        -1.01776704e-01,  1.43144801e-02,  1.82002857e-02,
         2.76539754e-02, -1.94141679e-02,  8.87098238e-02,
         6.60644472e-02],
       [-2.20715180e-01, -7.20694065e-02, -6.08972833e-02,
        -4.82957587e-02,  1.28858402e-01,  1.30042464e-01,
         1.32807568e-01, -7.52742141e-02,  9.51702446e-02,
         3.10119465e-02],
       [-1.09407350e-01, -5.27948700e-03,  1.29588693e-03,
        -2.61662379e-02,  3.01920641e-02,  1.13487415e-01,
         8.23267922e-02,  1.92574020e-02,  2.31986474e-02,
         4.13139611e-02],
       [-2.12277412e-01, -1.35507256e-01,  4.22930568e-02,
        -1.34565741e-01,  1.17879853e-01,  1.30573064e-01,
         1.81054786e-01, -1.70722306e-01,  1.05854876e-01,
         7.36362934e-02],
       [-1.78249478e-01, -7.55607188e-02,  7.75147527e-02,
        -2.14659080e-01,  3.26948166e-02,  7.76198730e-02,
         1.08791113e-01, -2.38809325e-02,  1.79410487e-01,
         1.94452941e-01],
       [-1.92162693e-01, -1.50472090e-01, -8.24331492e-02,
        -1.40473023e-02,  3.60646360e-02, -9.39090401e-02,
         1.83859855e-01, -1.09493822e-01, -3.09051797e-02,
         1.36017531e-01],
       [-9.21519399e-02, -1.53335631e-02, -5.56742400e-02,
        -9.68495384e-02,  2.35293470e-02,  2.53665410e-02,
         1.79999322e-01, -7.10204691e-02, -7.29817525e-02,
         4.50368747e-02],
       [-1.22261971e-01, -6.94630146e-02, -7.97796808e-03,
        -1.03088826e-01, -7.38603100e-02,  1.84892826e-02,
         9.76646394e-02, -3.29037756e-02, -1.77134499e-02,
         1.62288889e-01],
       [-6.78652674e-02, -1.08500615e-01,  5.66991530e-02,
        -9.52370912e-02,  5.28126955e-02,  1.05176866e-02,
         1.73085481e-01, -1.37753151e-02,  1.95556954e-02,
         1.38068855e-01],
       [-2.02808753e-01, -3.39423120e-02,  1.82233751e-03,
        -5.71424365e-02,  3.40205729e-02,  8.74454305e-02,
         8.47227685e-03, -2.52498202e-02,  4.66104299e-02,
         1.10718749e-01],
       [-9.52449068e-02, -3.35062481e-02, -1.00178778e-01,
        -9.72513855e-02, -3.58061343e-02,  3.04423086e-02,
         5.70362583e-02, -4.03833576e-02, -4.28436548e-02,
         9.73245874e-02],
       [-2.06081957e-01, -1.71493232e-01,  2.52560824e-02,
        -1.55212343e-01, -4.33478206e-02,  2.34177694e-01,
         8.46128762e-02,  1.75322518e-02,  2.04347119e-01,
         1.54971585e-01],
       [-1.95310384e-01,  1.30968075e-02, -9.68117267e-03,
        -7.31432810e-02,  1.02618083e-01,  1.59629256e-01,
         1.66028887e-01, -7.12903216e-03,  1.78021699e-01,
        -2.17130631e-02],
       [-1.59163624e-01, -1.77137554e-05,  1.75410658e-02,
        -9.08103511e-02,  7.25786015e-02,  9.21041369e-02,
         1.24915361e-01, -6.55939505e-02, -1.13440230e-02,
         1.03661232e-01],
       [-1.93366870e-01, -4.36344892e-02,  1.37750164e-01,
        -1.91939399e-01, -1.50268525e-03,  8.03942382e-02,
         2.15812266e-01,  5.38492575e-02,  1.36685073e-01,
         2.22119391e-01],
       [-1.65946245e-01,  7.89588690e-03, -1.65037125e-01,
        -1.23690292e-01, -8.57629776e-02, -2.55736727e-02,
         1.67541012e-01, -6.63827211e-02,  2.98694819e-02,
         1.71927184e-01],
       [-1.56264767e-01, -1.72245800e-02, -4.98924702e-02,
        -2.98387632e-02,  2.80477256e-02,  4.94132042e-02,
         4.89805043e-02,  1.96998678e-02, -4.14144360e-02,
        -5.05549274e-02],
       [-1.46449029e-01, -1.12528354e-01, -4.66653258e-02,
        -3.78398523e-02,  7.60737807e-03, -2.70657167e-02,
         1.11277811e-01,  6.37479573e-02, -2.39458829e-02,
         1.22067556e-01],
       [-1.92323536e-01, -1.43002480e-01,  5.29062748e-03,
        -1.70663983e-01,  8.39572400e-03,  6.37906119e-02,
         1.24084033e-01,  6.02792688e-02,  7.18353763e-02,
         5.03963791e-03],
       [-1.70977920e-01,  1.04207098e-02,  1.18544906e-01,
        -4.29532528e-02, -3.53983864e-02,  1.80302024e-01,
         8.08775946e-02,  3.19045782e-02,  2.52931342e-02,
         1.29424319e-01],
       [-2.13301033e-01, -6.96119964e-02,  2.32847631e-02,
        -7.73920864e-02,  1.10387571e-01,  1.13307782e-01,
         1.41805351e-01, -5.19381016e-02,  1.15313083e-01,
         1.40049949e-01],
       [-1.71651557e-01, -5.98860830e-02, -3.92800570e-03,
        -1.04376137e-01,  7.78115019e-02,  6.84583709e-02,
         2.51923770e-01, -1.05199262e-01,  1.64517179e-01,
         2.18875334e-01],
       [-2.60777414e-01, -8.93031508e-02,  1.27723843e-01,
        -1.97950065e-01,  1.19145498e-01,  7.30907321e-02,
         2.23771721e-01, -6.83849230e-02,  3.68930906e-01,
         1.86811388e-01],
       [-2.38028213e-01,  1.11199915e-03,  2.25015372e-01,
         8.22724327e-02, -1.14511400e-01,  1.57513067e-01,
         5.22858277e-02,  2.13724375e-03,  3.15639377e-02,
         2.08704025e-01],
       [-1.46687120e-01, -1.10313833e-01, -1.16352811e-02,
        -1.44550815e-01,  2.09794566e-02,  1.47883072e-02,
         3.96856442e-02, -2.15019658e-03, -4.90810722e-02,
         1.34708211e-01],
       [-2.02591017e-01, -2.29728431e-01,  6.73423260e-02,
        -1.24901496e-01, -1.38434023e-02,  8.64367038e-02,
         1.22342721e-01,  1.67826824e-02,  1.65354639e-01,
         1.83434993e-01],
       [-2.25799978e-01, -1.02682747e-01,  9.48531851e-02,
        -9.38871950e-02,  1.03806734e-01,  2.04695478e-01,
         8.09893832e-02, -1.45416632e-02,  1.33486420e-01,
        -6.27665371e-02],
       [-1.19375348e-01,  2.23235339e-02,  1.04302749e-01,
        -1.11149743e-01,  6.12434298e-02,  6.89433664e-02,
         2.08741099e-01, -3.81497070e-02, -1.42122135e-02,
         7.65201449e-03]], dtype=float32)>}
2022-01-26 05:41:53.590742: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Vous pouvez également charger et effectuer des inférences de manière distribuée :

another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
  loaded = tf.saved_model.load(saved_model_path)
  inference_func = loaded.signatures[DEFAULT_FUNCTION_KEY]

  dist_predict_dataset = another_strategy.experimental_distribute_dataset(
      predict_dataset)

  # Calling the function in a distributed manner
  for batch in dist_predict_dataset:
    another_strategy.run(inference_func,args=(batch,))
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
2022-01-26 05:41:53.931428: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.
WARNING:tensorflow:Using MirroredStrategy eagerly has significant overhead currently. We will be working on improving this in the future, but for now please wrap `call_for_each_replica` or `experimental_run` or `run` inside a tf.function to get the best performance.

L'appel de la fonction restaurée n'est qu'une passe en avant sur le modèle enregistré (prédiction). Et si vous souhaitez continuer à entraîner la fonction chargée ? Ou intégrer la fonction chargée dans un modèle plus grand ? Une pratique courante consiste à envelopper cet objet chargé dans une couche Keras pour y parvenir. Heureusement, TF Hub a hub.KerasLayer à cet effet, illustré ici :

import tensorflow_hub as hub

def build_model(loaded):
  x = tf.keras.layers.Input(shape=(28, 28, 1), name='input_x')
  # Wrap what's loaded to a KerasLayer
  keras_layer = hub.KerasLayer(loaded, trainable=True)(x)
  model = tf.keras.Model(x, keras_layer)
  return model

another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
  loaded = tf.saved_model.load(saved_model_path)
  model = build_model(loaded)

  model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                optimizer=tf.keras.optimizers.Adam(),
                metrics=[tf.metrics.SparseCategoricalAccuracy()])
  model.fit(train_dataset, epochs=2)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
Epoch 1/2
2022-01-26 05:41:55.594317: W tensorflow/core/grappler/optimizers/data/auto_shard.cc:547] The `assert_cardinality` transformation is currently not handled by the auto-shard rewrite and will be removed.
938/938 [==============================] - 6s 3ms/step - loss: 0.1910 - sparse_categorical_accuracy: 0.9442
Epoch 2/2
938/938 [==============================] - 3s 4ms/step - loss: 0.0633 - sparse_categorical_accuracy: 0.9813

Comme vous pouvez le voir, hub.KerasLayer le résultat rechargé depuis tf.saved_model.load() dans une couche Keras qui peut être utilisée pour créer un autre modèle. Ceci est très utile pour l'apprentissage par transfert.

Quelle API dois-je utiliser ?

Pour la sauvegarde, si vous travaillez avec un modèle keras, il est presque toujours recommandé d'utiliser l'API model.save() de Keras. Si ce que vous enregistrez n'est pas un modèle Keras, l'API de niveau inférieur est votre seul choix.

Pour le chargement, l'API que vous utilisez dépend de ce que vous voulez obtenir de l'API de chargement. Si vous ne pouvez pas (ou ne voulez pas) obtenir un modèle Keras, utilisez tf.saved_model.load() . Sinon, utilisez tf.keras.models.load_model() . Notez que vous ne pouvez récupérer un modèle Keras que si vous avez enregistré un modèle Keras.

Il est possible de mélanger et assortir les API. Vous pouvez enregistrer un modèle Keras avec model.save et charger un modèle non-Keras avec l'API de bas niveau, tf.saved_model.load .

model = get_model()

# Saving the model using Keras's save() API
model.save(keras_model_path) 

another_strategy = tf.distribute.MirroredStrategy()
# Loading the model using lower level API
with another_strategy.scope():
  loaded = tf.saved_model.load(keras_model_path)
INFO:tensorflow:Assets written to: /tmp/keras_save/assets
INFO:tensorflow:Assets written to: /tmp/keras_save/assets
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

Enregistrement/Chargement à partir d'un appareil local

Lors de l'enregistrement et du chargement à partir d'un périphérique io local lors d'une exécution à distance, par exemple à l'aide d'un Cloud TPU, l'option experimental_io_device doit être utilisée pour définir le périphérique io sur localhost.

model = get_model()

# Saving the model to a path on localhost.
saved_model_path = "/tmp/tf_save"
save_options = tf.saved_model.SaveOptions(experimental_io_device='/job:localhost')
model.save(saved_model_path, options=save_options)

# Loading the model from a path on localhost.
another_strategy = tf.distribute.MirroredStrategy()
with another_strategy.scope():
  load_options = tf.saved_model.LoadOptions(experimental_io_device='/job:localhost')
  loaded = tf.keras.models.load_model(saved_model_path, options=load_options)
INFO:tensorflow:Assets written to: /tmp/tf_save/assets
INFO:tensorflow:Assets written to: /tmp/tf_save/assets
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)

Mises en garde

Un cas particulier est lorsque vous avez un modèle Keras qui n'a pas d'entrées bien définies. Par exemple, un modèle séquentiel peut être créé sans aucune forme d'entrée ( Sequential([Dense(3), ...] ). Les modèles sous-classés n'ont pas non plus d'entrées bien définies après l'initialisation. Dans ce cas, vous devez vous en tenir à la API de niveau inférieur lors de l'enregistrement et du chargement, sinon vous obtiendrez une erreur.

Pour vérifier si votre modèle a des entrées bien définies, vérifiez simplement si model.inputs vaut None . Si ce n'est pas None , tout va bien. Les formes d'entrée sont automatiquement définies lorsque le modèle est utilisé dans .fit , .evaluate , .predict , ou lors de l'appel du modèle ( model(inputs) ).

Voici un exemple:

class SubclassedModel(tf.keras.Model):

  output_name = 'output_layer'

  def __init__(self):
    super(SubclassedModel, self).__init__()
    self._dense_layer = tf.keras.layers.Dense(
        5, dtype=tf.dtypes.float32, name=self.output_name)

  def call(self, inputs):
    return self._dense_layer(inputs)

my_model = SubclassedModel()
# my_model.save(keras_model_path)  # ERROR! 
tf.saved_model.save(my_model, saved_model_path)
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.SubclassedModel object at 0x7f3ad00f3510>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.SubclassedModel object at 0x7f3ad00f3510>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.layers.core.dense.Dense object at 0x7f3ad00f3e90>, because it is not built.
WARNING:tensorflow:Skipping full serialization of Keras layer <keras.layers.core.dense.Dense object at 0x7f3ad00f3e90>, because it is not built.
INFO:tensorflow:Assets written to: /tmp/tf_save/assets
INFO:tensorflow:Assets written to: /tmp/tf_save/assets