![]() |
A factorized embeddings layer for supporting larger embeddings.
Inherits From: OnDeviceEmbedding
tfm.nlp.layers.FactorizedEmbedding(
vocab_size: int,
embedding_width: int,
output_dim: int,
initializer='glorot_uniform',
use_one_hot=False,
scale_factor=None,
**kwargs
)
Attributes | |
---|---|
embedding_width
|
|
vocab_size
|
Methods
call
call(
inputs
)
This is where the layer's logic lives.
The call()
method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()
). It is recommended to create state, including
tf.Variable
instances and nested Layer
instances,
in __init__()
, or in the build()
method that is
called automatically before call()
executes for the first time.
Args | |
---|---|
inputs
|
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
|
*args
|
Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above. |
**kwargs
|
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
training : Boolean scalar tensor of Python boolean indicating
whether the call is meant for training or inference.mask : Boolean input mask. If the layer's call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).
|
Returns | |
---|---|
A tensor or list/tuple of tensors. |