ML 커뮤니티 데이는 11월 9일입니다! TensorFlow, JAX에서 업데이트를 우리와 함께, 더 자세히 알아보기

추정기

TensorFlow.org에서 보기 Google Colab에서 실행 GitHub에서 소스 보기 노트북 다운로드

이 문서에 소개하고는 tf.estimator -a 높은 수준의 TensorFlow API를. Estimators는 다음 작업을 캡슐화합니다.

  • 훈련
  • 평가
  • 예측
  • 서빙을 위해 내보내기

TensorFlow는 미리 만들어진 여러 Estimator를 구현합니다. 사용자 정의 추정기는 여전히 지원되지만 주로 이전 버전과의 호환성 측정입니다. 사용자 정의 추정량은 새로운 코드를 사용할 수 없습니다. 모든 추정량은-만든 사전 또는 사용자 정의에 기초 클래스 사람은-있습니다 tf.estimator.Estimator 클래스입니다.

간단한 예를 들어, 시도 견적 자습서 . 이 API 디자인에 대한 개요를 확인 백서를 .

설정

pip install -U tensorflow_datasets
import tempfile
import os

import tensorflow as tf
import tensorflow_datasets as tfds

장점

A와 유사 tf.keras.Model , estimator 모델 수준의 추상화입니다. tf.estimator 위해 현재 개발중인 여전히 몇 가지 기능을 제공합니다 tf.keras . 이것들은:

  • 매개변수 서버 기반 교육
  • 전체 TFX의 통합

추정기 기능

추정기는 다음과 같은 이점을 제공합니다.

  • 모델을 변경하지 않고 로컬 호스트 또는 분산 다중 서버 환경에서 Estimator 기반 모델을 실행할 수 있습니다. 또한 모델을 다시 코딩하지 않고도 CPU, GPU 또는 TPU에서 Estimator 기반 모델을 실행할 수 있습니다.
  • 추정기는 다음을 수행하는 방법과 시기를 제어하는 ​​안전한 분산 교육 루프를 제공합니다.
    • 데이터 로드
    • 예외 처리
    • 체크포인트 파일 생성 및 장애 복구
    • TensorBoard에 대한 요약 저장

Estimators로 애플리케이션을 작성할 때 데이터 입력 파이프라인을 모델에서 분리해야 합니다. 이 분리는 다른 데이터 세트로 실험을 단순화합니다.

미리 만들어진 Estimator 사용하기

미리 만들어진 Estimator를 사용하면 기본 TensorFlow API보다 훨씬 더 높은 개념 수준에서 작업할 수 있습니다. Estimator가 모든 "배관"을 처리하므로 더 이상 계산 그래프 또는 세션 생성에 대해 걱정할 필요가 없습니다. 또한 미리 만들어진 Estimator를 사용하면 최소한의 코드 변경만 수행하여 다양한 모델 아키텍처를 실험할 수 있습니다. tf.estimator.DNNClassifier , 예를 들어, 기차 분류 모델은 밀도, 피드 포워드 신경망을 기반으로하는 미리 만들어진 견적 클래스입니다.

미리 만들어진 Estimator에 의존하는 TensorFlow 프로그램은 일반적으로 다음 4단계로 구성됩니다.

1. 입력 함수 작성

예를 들어 훈련 세트를 가져오는 함수와 테스트 세트를 가져오는 다른 함수를 만들 수 있습니다. 추정자는 입력이 한 쌍의 객체로 형식화되기를 기대합니다.

  • 키가 기능 이름이고 값이 해당 기능 데이터를 포함하는 Tensor(또는 SparseTensors)인 사전
  • 하나 이상의 레이블을 포함하는 Tensor

input_fn 반환해야 tf.data.Dataset 해당 형식 수익률 쌍 그.

예를 들어, 다음 코드는 빌드 tf.data.Dataset 타이타닉 데이터 세트의에서 train.csv 파일을 :

def train_input_fn():
  titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv")
  titanic = tf.data.experimental.make_csv_dataset(
      titanic_file, batch_size=32,
      label_name="survived")
  titanic_batches = (
      titanic.cache().repeat().shuffle(500)
      .prefetch(tf.data.AUTOTUNE))
  return titanic_batches

input_fn A의 실행 tf.Graph 또한 직접 돌아갈 수 (features_dics, labels) 그래프 텐서를 포함하는 한 쌍의, 그러나 이것은 리턴 상수 같은 간단한 경우 에러 유발 밖이다.

2. 기능 열을 정의합니다.

tf.feature_column 식별하는 기능 명, 형식 및 임의의 입력 전처리.

예를 들어 다음 스니펫은 3개의 기능 열을 생성합니다.

  • 먼저 사용 age 부동 소수점 입력으로 직접 기능을.
  • 두 번째는 사용 class 범주 형 입력으로서 기능한다.
  • 세 번째 사용하는 embark_town 범주 형 입력으로 만 사용 hashing trick 옵션을 열거하고, 옵션의 수를 설정의 필요성을 방지 할 수 있습니다.

자세한 내용은 확인 기능을 열 자습서를 .

age = tf.feature_column.numeric_column('age')
cls = tf.feature_column.categorical_column_with_vocabulary_list('class', ['First', 'Second', 'Third']) 
embark = tf.feature_column.categorical_column_with_hash_bucket('embark_town', 32)

3. 미리 만들어진 관련 Estimator를 인스턴스화합니다.

예를 들어, 여기에 미리 만들어진 견적라는 이름의 샘플 인스턴스의 LinearClassifier :

model_dir = tempfile.mkdtemp()
model = tf.estimator.LinearClassifier(
    model_dir=model_dir,
    feature_columns=[embark, cls, age],
    n_classes=2
)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpl24pp3cp', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}

자세한 내용은, 당신이 갈 수있는 선형 분류 튜토리얼 .

4. 훈련, 평가 또는 추론 방법을 호출합니다.

모든 추정량은 제공 train , evaluatepredict 방법.

model = model.train(input_fn=train_input_fn, steps=100)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_v1.py:1684: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/ftrl.py:147: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpl24pp3cp/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 100...
INFO:tensorflow:Saving checkpoints for 100 into /tmp/tmpl24pp3cp/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 100...
INFO:tensorflow:Loss for final step: 0.6319582.
2021-09-22 20:49:10.453286: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
result = model.evaluate(train_input_fn, steps=10)

for key, value in result.items():
  print(key, ":", value)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:49:11
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpl24pp3cp/model.ckpt-100
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.74609s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:49:12
INFO:tensorflow:Saving dict for global step 100: accuracy = 0.734375, accuracy_baseline = 0.640625, auc = 0.7373913, auc_precision_recall = 0.64306235, average_loss = 0.563341, global_step = 100, label/mean = 0.359375, loss = 0.563341, precision = 0.734375, prediction/mean = 0.3463129, recall = 0.40869564
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 100: /tmp/tmpl24pp3cp/model.ckpt-100
accuracy : 0.734375
accuracy_baseline : 0.640625
auc : 0.7373913
auc_precision_recall : 0.64306235
average_loss : 0.563341
label/mean : 0.359375
loss : 0.563341
precision : 0.734375
prediction/mean : 0.3463129
recall : 0.40869564
global_step : 100
2021-09-22 20:49:12.168629: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
for pred in model.predict(train_input_fn):
  for key, value in pred.items():
    print(key, ":", value)
  break
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpl24pp3cp/model.ckpt-100
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
logits : [-1.5173098]
logistic : [0.17985801]
probabilities : [0.820142   0.17985801]
class_ids : [0]
classes : [b'0']
all_class_ids : [0 1]
all_classes : [b'0' b'1']
2021-09-22 20:49:13.076528: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

미리 만들어진 에스티메이터의 이점

미리 만들어진 Estimators는 모범 사례를 인코딩하여 다음과 같은 이점을 제공합니다.

  • 단일 시스템 또는 클러스터에서 전략을 구현하고 계산 그래프의 다른 부분을 실행해야 하는 위치를 결정하기 위한 모범 사례.
  • 이벤트(요약) 작성 및 보편적으로 유용한 요약에 대한 모범 사례.

미리 만들어진 Estimator를 사용하지 않는 경우 앞의 기능을 직접 구현해야 합니다.

커스텀 에스티메이터

심장의 모든 견적 든간에 미리 만들어진 또는 모델 함수 맞춤이다 model_fn 훈련, 평가 및 예측하기위한 그래프를 작성하는 방법이다. 미리 만들어진 Estimator를 사용할 때 다른 사람이 이미 모델 기능을 구현했습니다. 사용자 정의 Estimator에 의존하는 경우 모델 함수를 직접 작성해야 합니다.

Keras 모델에서 Estimator 만들기

당신과 추정량 기존 Keras 모델을 변환 할 수 있습니다 tf.keras.estimator.model_to_estimator . 이는 모델 코드를 현대화하려는 경우에 유용하지만 교육 파이프라인에 여전히 에스티메이터가 필요합니다.

Keras MobileNet V2 모델을 인스턴스화하고 옵티마이저, 손실 및 메트릭을 사용하여 모델을 컴파일하여 학습할 수 있습니다.

keras_mobilenet_v2 = tf.keras.applications.MobileNetV2(
    input_shape=(160, 160, 3), include_top=False)
keras_mobilenet_v2.trainable = False

estimator_model = tf.keras.Sequential([
    keras_mobilenet_v2,
    tf.keras.layers.GlobalAveragePooling2D(),
    tf.keras.layers.Dense(1)
])

# Compile the model
estimator_model.compile(
    optimizer='adam',
    loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
    metrics=['accuracy'])
Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_160_no_top.h5
9412608/9406464 [==============================] - 0s 0us/step
9420800/9406464 [==============================] - 0s 0us/step

만들기 Estimator 컴파일 Keras의 모델을. Keras 모델의 초기 모델 상태는 생성에 보존되어 Estimator :

est_mobilenet_v2 = tf.keras.estimator.model_to_estimator(keras_model=estimator_model)
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpmosnmied
INFO:tensorflow:Using the Keras model provided.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/backend.py:401: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model.
  warnings.warn('`tf.keras.backend.set_learning_phase` is deprecated and '
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/utils/generic_utils.py:497: CustomMaskWarning: Custom mask layers require a config and must override get_config. When loading, the custom mask layer must be passed to the custom_objects argument.
  category=CustomMaskWarning)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpmosnmied', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}

파생 치료 Estimator 당신이 다른와 마찬가지로 Estimator .

IMG_SIZE = 160  # All images will be resized to 160x160

def preprocess(image, label):
  image = tf.cast(image, tf.float32)
  image = (image/127.5) - 1
  image = tf.image.resize(image, (IMG_SIZE, IMG_SIZE))
  return image, label
def train_input_fn(batch_size):
  data = tfds.load('cats_vs_dogs', as_supervised=True)
  train_data = data['train']
  train_data = train_data.map(preprocess).shuffle(500).batch(batch_size)
  return train_data

훈련하려면 Estimator의 훈련 함수를 호출하세요.

est_mobilenet_v2.train(input_fn=lambda: train_input_fn(32), steps=50)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmpmosnmied/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={})
INFO:tensorflow:Warm-starting with WarmStartSettings: WarmStartSettings(ckpt_to_initialize_from='/tmp/tmpmosnmied/keras/keras_model.ckpt', vars_to_warm_start='.*', var_name_to_vocab_info={}, var_name_to_prev_var_name={})
INFO:tensorflow:Warm-starting from: /tmp/tmpmosnmied/keras/keras_model.ckpt
INFO:tensorflow:Warm-starting from: /tmp/tmpmosnmied/keras/keras_model.ckpt
INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES.
INFO:tensorflow:Warm-starting variables only in TRAINABLE_VARIABLES.
INFO:tensorflow:Warm-started 158 variables.
INFO:tensorflow:Warm-started 158 variables.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpmosnmied/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpmosnmied/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6994096, step = 0
INFO:tensorflow:loss = 0.6994096, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 50...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 50...
INFO:tensorflow:Saving checkpoints for 50 into /tmp/tmpmosnmied/model.ckpt.
INFO:tensorflow:Saving checkpoints for 50 into /tmp/tmpmosnmied/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 50...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 50...
INFO:tensorflow:Loss for final step: 0.68789804.
INFO:tensorflow:Loss for final step: 0.68789804.
<tensorflow_estimator.python.estimator.estimator.EstimatorV2 at 0x7f4b1c1e9890>

마찬가지로 평가하려면 Estimator의 평가 기능을 호출하십시오.

est_mobilenet_v2.evaluate(input_fn=lambda: train_input_fn(32), steps=10)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/training.py:2470: UserWarning: `Model.state_updates` will be removed in a future version. This property should not be used in TensorFlow 2.0, as `updates` are applied automatically.
  warnings.warn('`Model.state_updates` will be removed in a future version. '
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:49:36
INFO:tensorflow:Starting evaluation at 2021-09-22T20:49:36
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpmosnmied/model.ckpt-50
INFO:tensorflow:Restoring parameters from /tmp/tmpmosnmied/model.ckpt-50
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 3.89658s
INFO:tensorflow:Inference Time : 3.89658s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:49:39
INFO:tensorflow:Finished evaluation at 2021-09-22-20:49:39
INFO:tensorflow:Saving dict for global step 50: accuracy = 0.525, global_step = 50, loss = 0.6723582
INFO:tensorflow:Saving dict for global step 50: accuracy = 0.525, global_step = 50, loss = 0.6723582
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 50: /tmp/tmpmosnmied/model.ckpt-50
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 50: /tmp/tmpmosnmied/model.ckpt-50
{'accuracy': 0.525, 'loss': 0.6723582, 'global_step': 50}

자세한 내용에 대한 설명서를 참조하십시오 tf.keras.estimator.model_to_estimator .

Estimator로 객체 기반 체크포인트 저장하기

변수 이름 대신에 기술 된 객체 그래프와 체크 포인트 저장 기본적으로 추정량 체크 포인트 가이드 . tf.train.Checkpoint 이름 기반 체크 포인트를 읽을 수 있지만, 견적의의 모델 외부의 일부를 이동할 때 변수 이름은 변경 될 수 있습니다 model_fn . 이전 버전과의 호환성을 위해 객체 기반 체크포인트를 저장하면 Estimator 내부에서 모델을 훈련시킨 다음 외부에서 사용하는 것이 더 쉽습니다.

import tensorflow.compat.v1 as tf_compat
def toy_dataset():
  inputs = tf.range(10.)[:, None]
  labels = inputs * 5. + tf.range(5.)[None, :]
  return tf.data.Dataset.from_tensor_slices(
    dict(x=inputs, y=labels)).repeat().batch(2)
class Net(tf.keras.Model):
  """A simple linear model."""

  def __init__(self):
    super(Net, self).__init__()
    self.l1 = tf.keras.layers.Dense(5)

  def call(self, x):
    return self.l1(x)
def model_fn(features, labels, mode):
  net = Net()
  opt = tf.keras.optimizers.Adam(0.1)
  ckpt = tf.train.Checkpoint(step=tf_compat.train.get_global_step(),
                             optimizer=opt, net=net)
  with tf.GradientTape() as tape:
    output = net(features['x'])
    loss = tf.reduce_mean(tf.abs(output - features['y']))
  variables = net.trainable_variables
  gradients = tape.gradient(loss, variables)
  return tf.estimator.EstimatorSpec(
    mode,
    loss=loss,
    train_op=tf.group(opt.apply_gradients(zip(gradients, variables)),
                      ckpt.step.assign_add(1)),
    # Tell the Estimator to save "ckpt" in an object-based format.
    scaffold=tf_compat.train.Scaffold(saver=ckpt))

tf.keras.backend.clear_session()
est = tf.estimator.Estimator(model_fn, './tf_estimator_example/')
est.train(toy_dataset, steps=10)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
INFO:tensorflow:Using config: {'_model_dir': './tf_estimator_example/', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': './tf_estimator_example/', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into ./tf_estimator_example/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into ./tf_estimator_example/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 4.659403, step = 0
INFO:tensorflow:loss = 4.659403, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into ./tf_estimator_example/model.ckpt.
INFO:tensorflow:Saving checkpoints for 10 into ./tf_estimator_example/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Loss for final step: 39.58891.
INFO:tensorflow:Loss for final step: 39.58891.
<tensorflow_estimator.python.estimator.estimator.EstimatorV2 at 0x7f4b7c451fd0>

tf.train.Checkpoint 다음의에서 견적의 체크 포인트를로드 할 수 있습니다 model_dir .

opt = tf.keras.optimizers.Adam(0.1)
net = Net()
ckpt = tf.train.Checkpoint(
  step=tf.Variable(1, dtype=tf.int64), optimizer=opt, net=net)
ckpt.restore(tf.train.latest_checkpoint('./tf_estimator_example/'))
ckpt.step.numpy()  # From est.train(..., steps=10)
10

Estimators에서 저장된 모델

추정량을 통해 SavedModels을 수출 tf.Estimator.export_saved_model .

input_column = tf.feature_column.numeric_column("x")

estimator = tf.estimator.LinearClassifier(feature_columns=[input_column])

def input_fn():
  return tf.data.Dataset.from_tensor_slices(
    ({"x": [1., 2., 3., 4.]}, [1, 1, 0, 0])).repeat(200).shuffle(64).batch(16)
estimator.train(input_fn)
INFO:tensorflow:Using default config.
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp30_d7xz6
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp30_d7xz6
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp30_d7xz6', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp30_d7xz6', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp30_d7xz6/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp30_d7xz6/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:loss = 0.6931472, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 50...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 50...
INFO:tensorflow:Saving checkpoints for 50 into /tmp/tmp30_d7xz6/model.ckpt.
INFO:tensorflow:Saving checkpoints for 50 into /tmp/tmp30_d7xz6/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 50...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 50...
INFO:tensorflow:Loss for final step: 0.4022895.
INFO:tensorflow:Loss for final step: 0.4022895.
<tensorflow_estimator.python.estimator.canned.linear.LinearClassifierV2 at 0x7f4b1c10fd10>

저장하려면 Estimator 당신은 만들 필요가 serving_input_receiver . 이 함수의 일부를 구축 tf.Graph SavedModel 의해 수신 된 원시 데이터를 파싱한다.

tf.estimator.export 모듈 도와 기능이 구축 포함 receivers .

다음 코드에 기초하여 수신기 빌드 feature_columns 직렬화 받아 tf.Example 자주 함께 사용되는 프로토콜 버퍼, TF는 서빙을 .

tmpdir = tempfile.mkdtemp()

serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
  tf.feature_column.make_parse_example_spec([input_column]))

estimator_base_path = os.path.join(tmpdir, 'from_estimator')
estimator_path = estimator.export_saved_model(estimator_base_path, serving_input_fn)
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:145: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:145: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification']
INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification']
INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression']
INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression']
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict']
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Restoring parameters from /tmp/tmp30_d7xz6/model.ckpt-50
INFO:tensorflow:Restoring parameters from /tmp/tmp30_d7xz6/model.ckpt-50
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:No assets to write.
INFO:tensorflow:No assets to write.
INFO:tensorflow:SavedModel written to: /tmp/tmpi_szzuj1/from_estimator/temp-1632343781/saved_model.pb
INFO:tensorflow:SavedModel written to: /tmp/tmpi_szzuj1/from_estimator/temp-1632343781/saved_model.pb

Python에서 해당 모델을 로드하고 실행할 수도 있습니다.

imported = tf.saved_model.load(estimator_path)

def predict(x):
  example = tf.train.Example()
  example.features.feature["x"].float_list.value.extend([x])
  return imported.signatures["predict"](
    examples=tf.constant([example.SerializeToString()]))
print(predict(1.5))
print(predict(3.5))
{'class_ids': <tf.Tensor: shape=(1, 1), dtype=int64, numpy=array([[1]])>, 'classes': <tf.Tensor: shape=(1, 1), dtype=string, numpy=array([[b'1']], dtype=object)>, 'all_classes': <tf.Tensor: shape=(1, 2), dtype=string, numpy=array([[b'0', b'1']], dtype=object)>, 'all_class_ids': <tf.Tensor: shape=(1, 2), dtype=int32, numpy=array([[0, 1]], dtype=int32)>, 'logits': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.2974025]], dtype=float32)>, 'logistic': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.5738074]], dtype=float32)>, 'probabilities': <tf.Tensor: shape=(1, 2), dtype=float32, numpy=array([[0.42619258, 0.5738074 ]], dtype=float32)>}
{'class_ids': <tf.Tensor: shape=(1, 1), dtype=int64, numpy=array([[0]])>, 'classes': <tf.Tensor: shape=(1, 1), dtype=string, numpy=array([[b'0']], dtype=object)>, 'all_classes': <tf.Tensor: shape=(1, 2), dtype=string, numpy=array([[b'0', b'1']], dtype=object)>, 'all_class_ids': <tf.Tensor: shape=(1, 2), dtype=int32, numpy=array([[0, 1]], dtype=int32)>, 'logits': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[-1.1919093]], dtype=float32)>, 'logistic': <tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[0.23291764]], dtype=float32)>, 'probabilities': <tf.Tensor: shape=(1, 2), dtype=float32, numpy=array([[0.7670824 , 0.23291762]], dtype=float32)>}

tf.estimator.export.build_raw_serving_input_receiver_fn 당신이 원시 텐서보다는 걸릴 입력 기능을 만들 수 있습니다 tf.train.Example 들.

사용 tf.distribute.Strategy 견적 (제한된 지원)와

tf.estimator 원래 비동기 매개 변수 서버 접근 방식을 지원하는 분산 훈련 TensorFlow API입니다. tf.estimator 지금 지원 tf.distribute.Strategy . 당신이 사용하는 경우 tf.estimator , 당신은 당신의 코드에 거의 변화와 함께 배포 훈련을 변경할 수 있습니다. 이를 통해 Estimator 사용자는 이제 여러 GPU 및 여러 작업자에서 동기식 분산 교육을 수행하고 TPU를 사용할 수 있습니다. 그러나 Estimator의 이러한 지원은 제한적입니다. 아웃 확인 무엇의 지금 지원 자세한 내용은 아래 절을 참조하십시오.

사용 tf.distribute.Strategy 견적으로하면 Keras의 경우보다 약간 다릅니다. 대신에 사용하는 strategy.scope , 지금 당신은에 전략 개체를 전달 RunConfig 추합니다.

당신은 참조 할 수 있습니다 분산 교육 가이드 자세한 내용은.

다음 코드 조각은있는 미리 만들어진 견적과 쇼이 LinearRegressorMirroredStrategy :

mirrored_strategy = tf.distribute.MirroredStrategy()
config = tf.estimator.RunConfig(
    train_distribute=mirrored_strategy, eval_distribute=mirrored_strategy)
regressor = tf.estimator.LinearRegressor(
    feature_columns=[tf.feature_column.numeric_column('feats')],
    optimizer='SGD',
    config=config)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0',)
INFO:tensorflow:Initializing RunConfig with distribution strategies.
INFO:tensorflow:Initializing RunConfig with distribution strategies.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Not using Distribute Coordinator.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpftw63jyd
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpftw63jyd
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpftw63jyd', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7f4b0c04c050>, '_device_fn': None, '_protocol': None, '_eval_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7f4b0c04c050>, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_distribute_coordinator_mode': None}
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpftw63jyd', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7f4b0c04c050>, '_device_fn': None, '_protocol': None, '_eval_distribute': <tensorflow.python.distribute.mirrored_strategy.MirroredStrategy object at 0x7f4b0c04c050>, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_distribute_coordinator_mode': None}

여기에서는 미리 만들어진 Estimator를 사용하지만 동일한 코드가 사용자 지정 Estimator에서도 작동합니다. train_distribute 훈련이 분산되는 방법을 결정하고, eval_distribute 평가가 분산되는 방법을 결정합니다. 이것은 훈련과 평가 모두에 동일한 전략을 사용하는 Keras와의 또 다른 차이점입니다.

이제 입력 함수로 이 Estimator를 훈련하고 평가할 수 있습니다.

def input_fn():
  dataset = tf.data.Dataset.from_tensors(({"feats":[1.]}, [1.]))
  return dataset.repeat(1000).batch(10)
regressor.train(input_fn=input_fn, steps=10)
regressor.evaluate(input_fn=input_fn, steps=10)
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/data/ops/dataset_ops.py:374: UserWarning: To make it possible to preserve tf.data options across serialization boundaries, their implementation has moved to be part of the TensorFlow graph. As a consequence, the options value is in general no longer known at graph construction time. Invoking this method in graph mode retains the legacy behavior of the original implementation, but note that the returned value might not reflect the actual value of the options.
  warnings.warn("To make it possible to preserve tf.data options across "
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Create CheckpointSaverHook.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/util.py:95: DistributedIteratorV1.initialize (from tensorflow.python.distribute.input_lib) is deprecated and will be removed in a future version.
Instructions for updating:
Use the iterator's `initializer` property instead.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/util.py:95: DistributedIteratorV1.initialize (from tensorflow.python.distribute.input_lib) is deprecated and will be removed in a future version.
Instructions for updating:
Use the iterator's `initializer` property instead.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpftw63jyd/model.ckpt.
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpftw63jyd/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
2021-09-22 20:49:45.706166: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorFromStringHandle' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorFromStringHandle} }
    .  Registered:  device='CPU'

2021-09-22 20:49:45.707521: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorGetNextFromShard' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorGetNextFromShard} }
    .  Registered:  device='CPU'
INFO:tensorflow:loss = 1.0, step = 0
INFO:tensorflow:loss = 1.0, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmpftw63jyd/model.ckpt.
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmpftw63jyd/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Loss for final step: 2.877698e-13.
INFO:tensorflow:Loss for final step: 2.877698e-13.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /replica:0/task:0/device:CPU:0 then broadcast to ('/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:49:46
INFO:tensorflow:Starting evaluation at 2021-09-22T20:49:46
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmpftw63jyd/model.ckpt-10
INFO:tensorflow:Restoring parameters from /tmp/tmpftw63jyd/model.ckpt-10
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
2021-09-22 20:49:46.680821: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorFromStringHandle' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorFromStringHandle} }
    .  Registered:  device='CPU'

2021-09-22 20:49:46.682161: W tensorflow/core/grappler/utils/graph_view.cc:836] No registered 'MultiDeviceIteratorGetNextFromShard' OpKernel for GPU devices compatible with node { {node MultiDeviceIteratorGetNextFromShard} }
    .  Registered:  device='CPU'
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.26514s
INFO:tensorflow:Inference Time : 0.26514s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:49:46
INFO:tensorflow:Finished evaluation at 2021-09-22-20:49:46
INFO:tensorflow:Saving dict for global step 10: average_loss = 1.4210855e-14, global_step = 10, label/mean = 1.0, loss = 1.4210855e-14, prediction/mean = 0.99999994
INFO:tensorflow:Saving dict for global step 10: average_loss = 1.4210855e-14, global_step = 10, label/mean = 1.0, loss = 1.4210855e-14, prediction/mean = 0.99999994
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmpftw63jyd/model.ckpt-10
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmpftw63jyd/model.ckpt-10
{'average_loss': 1.4210855e-14,
 'label/mean': 1.0,
 'loss': 1.4210855e-14,
 'prediction/mean': 0.99999994,
 'global_step': 10}

Estimator와 Keras 사이에서 강조해야 할 또 다른 차이점은 입력 처리입니다. Keras에서 데이터 세트의 각 배치는 여러 복제본에 자동으로 분할됩니다. 그러나 Estimator에서는 자동 일괄 분할을 수행하지 않으며 다른 작업자 간에 데이터를 자동으로 분할하지도 않습니다. 당신은 당신의 데이터가 노동자와 장치를 통해 배포하고, 당신이 제공해야 할 방법을 완벽하게 제어 할 수 있습니다 input_fn 데이터를 분배하는 방법을 지정합니다.

귀하의 input_fn 따라서 근로자 당 하나 개의 데이터 집합을 제공 한 번 노동자 당이라고합니다. 그런 다음 해당 데이터 세트의 배치 하나가 해당 작업자의 복제본 하나에 공급되어 작업자 1명의 복제본 N개에 대해 N 배치를 소비합니다. 즉, 데이터 집합에 의해 반환 input_fn 크기의 일괄 제공해야 PER_REPLICA_BATCH_SIZE . 그리고 단계에 대한 글로벌 배치 크기는 다음과 같이 얻을 수 PER_REPLICA_BATCH_SIZE * strategy.num_replicas_in_sync .

다중 작업자 교육을 수행할 때 작업자 간에 데이터를 분할하거나 각각에 대해 임의의 시드를 섞어서 수행해야 합니다. 당신은이 작업을 수행하는 방법의 예를 확인할 수 있습니다 견적 멀티 - 작업자 교육 자습서를.

마찬가지로 다중 작업자 및 매개 변수 서버 전략도 사용할 수 있습니다. 이 코드는 동일하게 유지,하지만 당신은 사용할 필요가 tf.estimator.train_and_evaluate , 그리고 세트 TF_CONFIG 클러스터의 각 이진 실행을위한 환경 변수.

지금 지원되는 것은 무엇입니까?

견적을 제외한 모든 전략을 사용하여 훈련에 대한 제한된 지원이 TPUStrategy . 기본 교육 및 평가는 작동해야하지만 같은 고급 기능의 숫자 v1.train.Scaffold 하지 않습니다. 또한 이 통합에는 많은 버그가 있을 수 있으며 이 지원을 적극적으로 개선할 계획이 없습니다(Keras 및 사용자 지정 교육 루프 지원에 중점을 둡니다). 가능한 모든의 경우, 사용하는 것을 선호한다 tf.distribute 대신하는 API를.

교육 API Mirrored전략 TPU전략 MultiWorkerMirrored전략 CentralStorage전략 매개변수 서버 전략
에스티메이터 API 제한된 지원 지원되지 않음 제한된 지원 제한된 지원 제한된 지원

예제 및 자습서

다음은 Estimator에서 다양한 전략을 사용하는 방법을 보여주는 몇 가지 엔드 투 엔드 예입니다.

  1. 견적 자습서와 멀티 작업자 교육 당신이 사용하는 여러 노동자 훈련하는 방법을 보여줍니다 MultiWorkerMirroredStrategy MNIST 데이터 세트에.
  2. 의 엔드 - 투 - 엔드 예를 유통 전략 다중 작업자 교육 실행tensorflow/ecosystem 는 Kubernetes 템플릿을 사용합니다. 그것은 Keras 모델을 시작하고 사용하여 견적로 변환 tf.keras.estimator.model_to_estimator API를.
  3. 공식 ResNet50의 중 하나를 사용하여 훈련 할 수있다 모델, MirroredStrategy 또는 MultiWorkerMirroredStrategy .