Regularisasi graf untuk klasifikasi dokumen menggunakan graf natural

Tetap teratur dengan koleksi Simpan dan kategorikan konten berdasarkan preferensi Anda.

Lihat di TensorFlow.org Jalankan di Google Colab Lihat sumber di GitHub Unduh buku catatan

Ringkasan

Grafik regularisasi adalah teknik tertentu di bawah paradigma yang lebih luas dari Neural Grafik Learning ( Bui et al., 2018 ). Ide intinya adalah untuk melatih model jaringan saraf dengan tujuan yang diatur grafik, memanfaatkan data berlabel dan tidak berlabel.

Dalam tutorial ini, kita akan mengeksplorasi penggunaan regularisasi graf untuk mengklasifikasikan dokumen yang membentuk graf natural (organik).

Resep umum untuk membuat model graph-regularized menggunakan framework Neural Structured Learning (NSL) adalah sebagai berikut:

  1. Hasilkan data pelatihan dari grafik input dan fitur sampel. Node dalam grafik sesuai dengan sampel dan tepi dalam grafik sesuai dengan kesamaan antara pasangan sampel. Data pelatihan yang dihasilkan akan berisi fitur-fitur tetangga di samping fitur-fitur simpul asli.
  2. Membuat jaringan saraf sebagai model dasar menggunakan Keras berurutan, fungsional, atau subclass API.
  3. Bungkus model dasar dengan GraphRegularization kelas wrapper, yang disediakan oleh kerangka NSL, untuk membuat grafik baru Keras Model. Model baru ini akan menyertakan kerugian regularisasi grafik sebagai istilah regularisasi dalam tujuan pelatihannya.
  4. Melatih dan mengevaluasi grafik Keras Model.

Mempersiapkan

Instal paket Pembelajaran Terstruktur Neural.

pip install --quiet neural-structured-learning

Ketergantungan dan impor

import neural_structured_learning as nsl

import tensorflow as tf

# Resets notebook state
tf.keras.backend.clear_session()

print("Version: ", tf.__version__)
print("Eager mode: ", tf.executing_eagerly())
print(
    "GPU is",
    "available" if tf.config.list_physical_devices("GPU") else "NOT AVAILABLE")
Version:  2.8.0-rc0
Eager mode:  True
GPU is NOT AVAILABLE
2022-01-05 12:39:27.704660: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

kumpulan data Cora

The Cora dataset adalah grafik kutipan di mana node mewakili makalah pembelajaran mesin dan tepi mewakili kutipan antara pasangan kertas. Tugas yang terlibat adalah klasifikasi dokumen di mana tujuannya adalah untuk mengkategorikan setiap kertas ke dalam salah satu dari 7 kategori. Dengan kata lain, ini adalah masalah klasifikasi multi-kelas dengan 7 kelas.

Grafik

Grafik asli diarahkan. Namun, untuk tujuan contoh ini, kami mempertimbangkan versi tidak terarah dari grafik ini. Jadi, jika makalah A mengutip makalah B, kami juga menganggap makalah B telah mengutip A. Meskipun ini tidak selalu benar, dalam contoh ini, kami menganggap kutipan sebagai proxy untuk kesamaan, yang biasanya merupakan sifat komutatif.

Fitur

Setiap kertas di input secara efektif mengandung 2 fitur:

  1. Kata: Sebuah padat, multi-hot tas-dari-kata representasi dari teks di koran. Kosakata untuk dataset Cora berisi 1433 kata unik. Jadi, panjang fitur ini adalah 1433, dan nilai pada posisi 'i' adalah 0/1 yang menunjukkan apakah kata 'i' dalam kosakata ada di kertas yang diberikan atau tidak.

  2. Label: Sebuah bilangan bulat yang mewakili ID kelas (kategori) dari kertas.

Unduh kumpulan data Cora

wget --quiet -P /tmp https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz
tar -C /tmp -xvzf /tmp/cora.tgz
cora/
cora/README
cora/cora.cites
cora/cora.content

Konversikan data Cora ke format NSL

Dalam rangka untuk preprocess dataset Cora dan dikonversi ke format yang dibutuhkan oleh Syaraf Terstruktur Learning, kami akan menjalankan 'preprocess_cora_dataset.py' script, yang termasuk dalam repositori NSL github. Skrip ini melakukan hal berikut:

  1. Hasilkan fitur tetangga menggunakan fitur simpul asli dan grafik.
  2. Menghasilkan kereta api dan data uji perpecahan yang mengandung tf.train.Example contoh.
  3. Bertahan kereta yang dihasilkan dan data uji di TFRecord Format.
!wget https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py

!python preprocess_cora_dataset.py \
--input_cora_content=/tmp/cora/cora.content \
--input_cora_graph=/tmp/cora/cora.cites \
--max_nbrs=5 \
--output_train_data=/tmp/cora/train_merged_examples.tfr \
--output_test_data=/tmp/cora/test_examples.tfr
--2022-01-05 12:39:28--  https://raw.githubusercontent.com/tensorflow/neural-structured-learning/master/neural_structured_learning/examples/preprocess/cora/preprocess_cora_dataset.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 11640 (11K) [text/plain]
Saving to: ‘preprocess_cora_dataset.py’

preprocess_cora_dat 100%[===================>]  11.37K  --.-KB/s    in 0s      

2022-01-05 12:39:28 (78.9 MB/s) - ‘preprocess_cora_dataset.py’ saved [11640/11640]

2022-01-05 12:39:31.378912: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Reading graph file: /tmp/cora/cora.cites...
Done reading 5429 edges from: /tmp/cora/cora.cites (0.01 seconds).
Making all edges bi-directional...
Done (0.01 seconds). Total graph nodes: 2708
Joining seed and neighbor tf.train.Examples with graph edges...
Done creating and writing 2155 merged tf.train.Examples (1.36 seconds).
Out-degree histogram: [(1, 386), (2, 468), (3, 452), (4, 309), (5, 540)]
Output training data written to TFRecord file: /tmp/cora/train_merged_examples.tfr.
Output test data written to TFRecord file: /tmp/cora/test_examples.tfr.
Total running time: 0.04 minutes.

Variabel global

File jalan untuk kereta dan data uji didasarkan pada nilai-nilai parameter baris perintah yang digunakan untuk memanggil script 'preprocess_cora_dataset.py' di atas.

### Experiment dataset
TRAIN_DATA_PATH = '/tmp/cora/train_merged_examples.tfr'
TEST_DATA_PATH = '/tmp/cora/test_examples.tfr'

### Constants used to identify neighbor features in the input.
NBR_FEATURE_PREFIX = 'NL_nbr_'
NBR_WEIGHT_SUFFIX = '_weight'

Hyperparameter

Kami akan menggunakan contoh HParams untuk memasukkan berbagai hyperparameters dan konstanta yang digunakan untuk pelatihan dan evaluasi. Kami jelaskan secara singkat masing-masing di bawah ini:

  • num_classes: Ada total 7 kelas yang berbeda

  • max_seq_length: ini adalah ukuran kosa kata dan semua contoh pada input memiliki padat multi-panas, tas-dari-kata representasi. Dengan kata lain, nilai 1 untuk sebuah kata menunjukkan bahwa kata tersebut ada dalam input dan nilai 0 menunjukkan bahwa kata tersebut tidak ada.

  • distance_type: Ini adalah jarak metrik yang digunakan untuk mengatur sampel dengan tetangga-tetangganya.

  • graph_regularization_multiplier: ini mengontrol berat relatif istilah grafik regularisasi di fungsi kerugian secara keseluruhan.

  • num_neighbors: Jumlah tetangga digunakan untuk grafik regularisasi. Nilai ini harus kurang dari atau sama dengan max_nbrs perintah-line argumen yang digunakan di atas ketika menjalankan preprocess_cora_dataset.py .

  • num_fc_units: Jumlah lapisan sepenuhnya terhubung dalam jaringan saraf kita.

  • train_epochs: Jumlah zaman pelatihan.

  • Ukuran Batch digunakan untuk pelatihan dan evaluasi: batch_size.

  • dropout_rate: Kontrol tingkat putus sekolah berikut setiap lapisan sepenuhnya terhubung

  • eval_steps: Jumlah batch untuk proses sebelum deeming evaluasi selesai. Jika diatur ke None , semua contoh dalam tes set dievaluasi.

class HParams(object):
  """Hyperparameters used for training."""
  def __init__(self):
    ### dataset parameters
    self.num_classes = 7
    self.max_seq_length = 1433
    ### neural graph learning parameters
    self.distance_type = nsl.configs.DistanceType.L2
    self.graph_regularization_multiplier = 0.1
    self.num_neighbors = 1
    ### model architecture
    self.num_fc_units = [50, 50]
    ### training parameters
    self.train_epochs = 100
    self.batch_size = 128
    self.dropout_rate = 0.5
    ### eval parameters
    self.eval_steps = None  # All instances in the test set are evaluated.

HPARAMS = HParams()

Memuat data kereta dan pengujian

Seperti dijelaskan sebelumnya dalam notebook ini, data pelatihan masukan dan uji telah diciptakan oleh 'preprocess_cora_dataset.py'. Kami akan memuat mereka ke dalam dua tf.data.Dataset objek - satu untuk kereta api dan satu untuk tes.

Pada lapisan masukan dari model kami, kami akan mengekstrak bukan hanya 'kata' dan 'label' fitur dari masing-masing sampel, tetapi tetangga juga sesuai fitur berdasarkan hparams.num_neighbors nilai. Contoh dengan lebih sedikit tetangga dari hparams.num_neighbors akan ditugaskan boneka nilai bagi mereka fitur tetangga tidak ada.

def make_dataset(file_path, training=False):
  """Creates a `tf.data.TFRecordDataset`.

  Args:
    file_path: Name of the file in the `.tfrecord` format containing
      `tf.train.Example` objects.
    training: Boolean indicating if we are in training mode.

  Returns:
    An instance of `tf.data.TFRecordDataset` containing the `tf.train.Example`
    objects.
  """

  def parse_example(example_proto):
    """Extracts relevant fields from the `example_proto`.

    Args:
      example_proto: An instance of `tf.train.Example`.

    Returns:
      A pair whose first value is a dictionary containing relevant features
      and whose second value contains the ground truth label.
    """
    # The 'words' feature is a multi-hot, bag-of-words representation of the
    # original raw text. A default value is required for examples that don't
    # have the feature.
    feature_spec = {
        'words':
            tf.io.FixedLenFeature([HPARAMS.max_seq_length],
                                  tf.int64,
                                  default_value=tf.constant(
                                      0,
                                      dtype=tf.int64,
                                      shape=[HPARAMS.max_seq_length])),
        'label':
            tf.io.FixedLenFeature((), tf.int64, default_value=-1),
    }
    # We also extract corresponding neighbor features in a similar manner to
    # the features above during training.
    if training:
      for i in range(HPARAMS.num_neighbors):
        nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, i, 'words')
        nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, i,
                                         NBR_WEIGHT_SUFFIX)
        feature_spec[nbr_feature_key] = tf.io.FixedLenFeature(
            [HPARAMS.max_seq_length],
            tf.int64,
            default_value=tf.constant(
                0, dtype=tf.int64, shape=[HPARAMS.max_seq_length]))

        # We assign a default value of 0.0 for the neighbor weight so that
        # graph regularization is done on samples based on their exact number
        # of neighbors. In other words, non-existent neighbors are discounted.
        feature_spec[nbr_weight_key] = tf.io.FixedLenFeature(
            [1], tf.float32, default_value=tf.constant([0.0]))

    features = tf.io.parse_single_example(example_proto, feature_spec)

    label = features.pop('label')
    return features, label

  dataset = tf.data.TFRecordDataset([file_path])
  if training:
    dataset = dataset.shuffle(10000)
  dataset = dataset.map(parse_example)
  dataset = dataset.batch(HPARAMS.batch_size)
  return dataset


train_dataset = make_dataset(TRAIN_DATA_PATH, training=True)
test_dataset = make_dataset(TEST_DATA_PATH)

Mari kita intip dataset kereta untuk melihat isinya.

for feature_batch, label_batch in train_dataset.take(1):
  print('Feature list:', list(feature_batch.keys()))
  print('Batch of inputs:', feature_batch['words'])
  nbr_feature_key = '{}{}_{}'.format(NBR_FEATURE_PREFIX, 0, 'words')
  nbr_weight_key = '{}{}{}'.format(NBR_FEATURE_PREFIX, 0, NBR_WEIGHT_SUFFIX)
  print('Batch of neighbor inputs:', feature_batch[nbr_feature_key])
  print('Batch of neighbor weights:',
        tf.reshape(feature_batch[nbr_weight_key], [-1]))
  print('Batch of labels:', label_batch)
Feature list: ['NL_nbr_0_weight', 'NL_nbr_0_words', 'words']
Batch of inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 1 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of neighbor inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of neighbor weights: tf.Tensor(
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.

 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1.], shape=(128,), dtype=float32)
Batch of labels: tf.Tensor(
[2 2 6 2 0 6 1 3 5 0 1 2 3 6 1 1 0 3 5 2 3 1 4 1 6 1 3 2 2 2 0 3 2 1 3 3 2
 3 3 2 3 2 2 0 2 2 6 0 2 1 1 0 5 2 1 4 2 1 2 4 0 2 5 4 3 6 3 2 1 6 2 4 2 2
 6 4 6 4 3 5 2 2 2 4 2 2 2 1 2 2 2 4 2 3 6 2 0 6 6 0 2 6 2 1 2 0 1 1 3 2 0
 2 0 2 1 1 3 5 2 1 2 5 1 6 2 4 6 4], shape=(128,), dtype=int64)

Mari kita intip dataset pengujian untuk melihat isinya.

for feature_batch, label_batch in test_dataset.take(1):
  print('Feature list:', list(feature_batch.keys()))
  print('Batch of inputs:', feature_batch['words'])
  print('Batch of labels:', label_batch)
Feature list: ['words']
Batch of inputs: tf.Tensor(
[[0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 ...
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]
 [0 0 0 ... 0 0 0]], shape=(128, 1433), dtype=int64)
Batch of labels: tf.Tensor(
[5 2 2 2 1 2 6 3 2 3 6 1 3 6 4 4 2 3 3 0 2 0 5 2 1 0 6 3 6 4 2 2 3 0 4 2 2
 2 2 3 2 2 2 0 2 2 2 2 4 2 3 4 0 2 6 2 1 4 2 0 0 1 4 2 6 0 5 2 2 3 2 5 2 5
 2 3 2 2 2 2 2 6 6 3 2 4 2 6 3 2 2 6 2 4 2 2 1 3 4 6 0 0 2 4 2 1 3 6 6 2 6
 6 6 1 4 6 4 3 6 6 0 0 2 6 2 4 0 0], shape=(128,), dtype=int64)

Definisi model

Untuk mendemonstrasikan penggunaan regularisasi graf, kami membangun model dasar untuk masalah ini terlebih dahulu. Kami akan menggunakan jaringan saraf umpan maju sederhana dengan 2 lapisan tersembunyi dan putus di antaranya. Kami menggambarkan penciptaan model dasar dengan menggunakan semua jenis model yang didukung oleh tf.Keras kerangka - berurutan, fungsional, dan subclass.

Model dasar berurutan

def make_mlp_sequential_model(hparams):
  """Creates a sequential multi-layer perceptron model."""
  model = tf.keras.Sequential()
  model.add(
      tf.keras.layers.InputLayer(
          input_shape=(hparams.max_seq_length,), name='words'))
  # Input is already one-hot encoded in the integer format. We cast it to
  # floating point format here.
  model.add(
      tf.keras.layers.Lambda(lambda x: tf.keras.backend.cast(x, tf.float32)))
  for num_units in hparams.num_fc_units:
    model.add(tf.keras.layers.Dense(num_units, activation='relu'))
    # For sequential models, by default, Keras ensures that the 'dropout' layer
    # is invoked only during training.
    model.add(tf.keras.layers.Dropout(hparams.dropout_rate))
  model.add(tf.keras.layers.Dense(hparams.num_classes))
  return model

Model dasar fungsional

def make_mlp_functional_model(hparams):
  """Creates a functional API-based multi-layer perceptron model."""
  inputs = tf.keras.Input(
      shape=(hparams.max_seq_length,), dtype='int64', name='words')

  # Input is already one-hot encoded in the integer format. We cast it to
  # floating point format here.
  cur_layer = tf.keras.layers.Lambda(
      lambda x: tf.keras.backend.cast(x, tf.float32))(
          inputs)

  for num_units in hparams.num_fc_units:
    cur_layer = tf.keras.layers.Dense(num_units, activation='relu')(cur_layer)
    # For functional models, by default, Keras ensures that the 'dropout' layer
    # is invoked only during training.
    cur_layer = tf.keras.layers.Dropout(hparams.dropout_rate)(cur_layer)

  outputs = tf.keras.layers.Dense(hparams.num_classes)(cur_layer)

  model = tf.keras.Model(inputs, outputs=outputs)
  return model

Model dasar subkelas

def make_mlp_subclass_model(hparams):
  """Creates a multi-layer perceptron subclass model in Keras."""

  class MLP(tf.keras.Model):
    """Subclass model defining a multi-layer perceptron."""

    def __init__(self):
      super(MLP, self).__init__()
      # Input is already one-hot encoded in the integer format. We create a
      # layer to cast it to floating point format here.
      self.cast_to_float_layer = tf.keras.layers.Lambda(
          lambda x: tf.keras.backend.cast(x, tf.float32))
      self.dense_layers = [
          tf.keras.layers.Dense(num_units, activation='relu')
          for num_units in hparams.num_fc_units
      ]
      self.dropout_layer = tf.keras.layers.Dropout(hparams.dropout_rate)
      self.output_layer = tf.keras.layers.Dense(hparams.num_classes)

    def call(self, inputs, training=False):
      cur_layer = self.cast_to_float_layer(inputs['words'])
      for dense_layer in self.dense_layers:
        cur_layer = dense_layer(cur_layer)
        cur_layer = self.dropout_layer(cur_layer, training=training)

      outputs = self.output_layer(cur_layer)

      return outputs

  return MLP()

Buat model dasar

# Create a base MLP model using the functional API.
# Alternatively, you can also create a sequential or subclass base model using
# the make_mlp_sequential_model() or make_mlp_subclass_model() functions
# respectively, defined above. Note that if a subclass model is used, its
# summary cannot be generated until it is built.
base_model_tag, base_model = 'FUNCTIONAL', make_mlp_functional_model(HPARAMS)
base_model.summary()
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 words (InputLayer)          [(None, 1433)]            0         
                                                                 
 lambda (Lambda)             (None, 1433)              0         
                                                                 
 dense (Dense)               (None, 50)                71700     
                                                                 
 dropout (Dropout)           (None, 50)                0         
                                                                 
 dense_1 (Dense)             (None, 50)                2550      
                                                                 
 dropout_1 (Dropout)         (None, 50)                0         
                                                                 
 dense_2 (Dense)             (None, 7)                 357       
                                                                 
=================================================================
Total params: 74,607
Trainable params: 74,607
Non-trainable params: 0
_________________________________________________________________

Model MLP dasar kereta

# Compile and train the base MLP model
base_model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])
base_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/functional.py:559: UserWarning: Input dict contained keys ['NL_nbr_0_weight', 'NL_nbr_0_words'] which did not match any model input. They will be ignored by the model.
  inputs = self._flatten_to_reference_inputs(inputs)
17/17 [==============================] - 1s 18ms/step - loss: 1.9521 - accuracy: 0.1838
Epoch 2/100
17/17 [==============================] - 0s 3ms/step - loss: 1.8590 - accuracy: 0.3044
Epoch 3/100
17/17 [==============================] - 0s 3ms/step - loss: 1.7770 - accuracy: 0.3601
Epoch 4/100
17/17 [==============================] - 0s 3ms/step - loss: 1.6655 - accuracy: 0.3898
Epoch 5/100
17/17 [==============================] - 0s 3ms/step - loss: 1.5386 - accuracy: 0.4543
Epoch 6/100
17/17 [==============================] - 0s 3ms/step - loss: 1.3856 - accuracy: 0.5077
Epoch 7/100
17/17 [==============================] - 0s 3ms/step - loss: 1.2736 - accuracy: 0.5531
Epoch 8/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1636 - accuracy: 0.5889
Epoch 9/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0654 - accuracy: 0.6385
Epoch 10/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9703 - accuracy: 0.6761
Epoch 11/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8689 - accuracy: 0.7104
Epoch 12/100
17/17 [==============================] - 0s 3ms/step - loss: 0.7704 - accuracy: 0.7494
Epoch 13/100
17/17 [==============================] - 0s 3ms/step - loss: 0.7157 - accuracy: 0.7810
Epoch 14/100
17/17 [==============================] - 0s 3ms/step - loss: 0.6296 - accuracy: 0.8186
Epoch 15/100
17/17 [==============================] - 0s 3ms/step - loss: 0.5932 - accuracy: 0.8167
Epoch 16/100
17/17 [==============================] - 0s 3ms/step - loss: 0.5526 - accuracy: 0.8464
Epoch 17/100
17/17 [==============================] - 0s 3ms/step - loss: 0.5112 - accuracy: 0.8445
Epoch 18/100
17/17 [==============================] - 0s 3ms/step - loss: 0.4624 - accuracy: 0.8613
Epoch 19/100
17/17 [==============================] - 0s 3ms/step - loss: 0.4163 - accuracy: 0.8696
Epoch 20/100
17/17 [==============================] - 0s 3ms/step - loss: 0.3808 - accuracy: 0.8849
Epoch 21/100
17/17 [==============================] - 0s 3ms/step - loss: 0.3564 - accuracy: 0.8933
Epoch 22/100
17/17 [==============================] - 0s 3ms/step - loss: 0.3453 - accuracy: 0.9002
Epoch 23/100
17/17 [==============================] - 0s 3ms/step - loss: 0.3226 - accuracy: 0.9114
Epoch 24/100
17/17 [==============================] - 0s 3ms/step - loss: 0.3058 - accuracy: 0.9151
Epoch 25/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2798 - accuracy: 0.9146
Epoch 26/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2638 - accuracy: 0.9248
Epoch 27/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2538 - accuracy: 0.9290
Epoch 28/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2356 - accuracy: 0.9411
Epoch 29/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2080 - accuracy: 0.9425
Epoch 30/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2172 - accuracy: 0.9364
Epoch 31/100
17/17 [==============================] - 0s 3ms/step - loss: 0.2259 - accuracy: 0.9225
Epoch 32/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1944 - accuracy: 0.9480
Epoch 33/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1892 - accuracy: 0.9434
Epoch 34/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1718 - accuracy: 0.9592
Epoch 35/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1826 - accuracy: 0.9508
Epoch 36/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1585 - accuracy: 0.9559
Epoch 37/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1605 - accuracy: 0.9545
Epoch 38/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1529 - accuracy: 0.9550
Epoch 39/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1411 - accuracy: 0.9615
Epoch 40/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1366 - accuracy: 0.9624
Epoch 41/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1431 - accuracy: 0.9578
Epoch 42/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1241 - accuracy: 0.9619
Epoch 43/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1310 - accuracy: 0.9661
Epoch 44/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1284 - accuracy: 0.9652
Epoch 45/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1215 - accuracy: 0.9633
Epoch 46/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1130 - accuracy: 0.9722
Epoch 47/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1074 - accuracy: 0.9722
Epoch 48/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1143 - accuracy: 0.9694
Epoch 49/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1015 - accuracy: 0.9740
Epoch 50/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1077 - accuracy: 0.9698
Epoch 51/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1035 - accuracy: 0.9684
Epoch 52/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1076 - accuracy: 0.9694
Epoch 53/100
17/17 [==============================] - 0s 3ms/step - loss: 0.1000 - accuracy: 0.9689
Epoch 54/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0967 - accuracy: 0.9749
Epoch 55/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0994 - accuracy: 0.9703
Epoch 56/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0943 - accuracy: 0.9740
Epoch 57/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0923 - accuracy: 0.9735
Epoch 58/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0848 - accuracy: 0.9800
Epoch 59/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0836 - accuracy: 0.9782
Epoch 60/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0913 - accuracy: 0.9735
Epoch 61/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0823 - accuracy: 0.9773
Epoch 62/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0753 - accuracy: 0.9810
Epoch 63/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0746 - accuracy: 0.9777
Epoch 64/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0861 - accuracy: 0.9731
Epoch 65/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0765 - accuracy: 0.9787
Epoch 66/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0750 - accuracy: 0.9791
Epoch 67/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0725 - accuracy: 0.9814
Epoch 68/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0762 - accuracy: 0.9791
Epoch 69/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0645 - accuracy: 0.9842
Epoch 70/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0606 - accuracy: 0.9861
Epoch 71/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0775 - accuracy: 0.9805
Epoch 72/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0655 - accuracy: 0.9800
Epoch 73/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0629 - accuracy: 0.9833
Epoch 74/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0625 - accuracy: 0.9824
Epoch 75/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0607 - accuracy: 0.9838
Epoch 76/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0578 - accuracy: 0.9824
Epoch 77/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0568 - accuracy: 0.9842
Epoch 78/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0595 - accuracy: 0.9833
Epoch 79/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0615 - accuracy: 0.9842
Epoch 80/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0555 - accuracy: 0.9852
Epoch 81/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0517 - accuracy: 0.9870
Epoch 82/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0541 - accuracy: 0.9856
Epoch 83/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0533 - accuracy: 0.9884
Epoch 84/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0509 - accuracy: 0.9838
Epoch 85/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0600 - accuracy: 0.9828
Epoch 86/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0617 - accuracy: 0.9800
Epoch 87/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0599 - accuracy: 0.9800
Epoch 88/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0502 - accuracy: 0.9870
Epoch 89/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0416 - accuracy: 0.9907
Epoch 90/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0542 - accuracy: 0.9842
Epoch 91/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0490 - accuracy: 0.9847
Epoch 92/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0374 - accuracy: 0.9916
Epoch 93/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0467 - accuracy: 0.9893
Epoch 94/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0426 - accuracy: 0.9879
Epoch 95/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0543 - accuracy: 0.9861
Epoch 96/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0420 - accuracy: 0.9870
Epoch 97/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0461 - accuracy: 0.9861
Epoch 98/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0425 - accuracy: 0.9898
Epoch 99/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0406 - accuracy: 0.9907
Epoch 100/100
17/17 [==============================] - 0s 3ms/step - loss: 0.0486 - accuracy: 0.9847
<keras.callbacks.History at 0x7f6f9d5eacd0>

Evaluasi model MLP dasar

# Helper function to print evaluation metrics.
def print_metrics(model_desc, eval_metrics):
  """Prints evaluation metrics.

  Args:
    model_desc: A description of the model.
    eval_metrics: A dictionary mapping metric names to corresponding values. It
      must contain the loss and accuracy metrics.
  """
  print('\n')
  print('Eval accuracy for ', model_desc, ': ', eval_metrics['accuracy'])
  print('Eval loss for ', model_desc, ': ', eval_metrics['loss'])
  if 'graph_loss' in eval_metrics:
    print('Eval graph loss for ', model_desc, ': ', eval_metrics['graph_loss'])
eval_results = dict(
    zip(base_model.metrics_names,
        base_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('Base MLP model', eval_results)
5/5 [==============================] - 0s 5ms/step - loss: 1.4192 - accuracy: 0.7939


Eval accuracy for  Base MLP model :  0.7938517332077026
Eval loss for  Base MLP model :  1.4192423820495605

Latih model MLP dengan regularisasi grafik

Memasukkan grafik regularisasi ke dalam istilah kehilangan yang ada tf.Keras.Model hanya memerlukan beberapa baris kode. Model dasar dibungkus untuk membuat yang baru tf.Keras subclass Model, yang rugi termasuk grafik regularisasi.

Untuk menilai manfaat tambahan dari regularisasi grafik, kami akan membuat contoh model dasar baru. Hal ini karena base_model telah dilatih selama beberapa iterasi, dan menggunakan kembali model yang dilatih ini untuk membuat model grafik-regularized tidak akan menjadi perbandingan yang adil untuk base_model .

# Build a new base MLP model.
base_reg_model_tag, base_reg_model = 'FUNCTIONAL', make_mlp_functional_model(
    HPARAMS)
# Wrap the base MLP model with graph regularization.
graph_reg_config = nsl.configs.make_graph_reg_config(
    max_neighbors=HPARAMS.num_neighbors,
    multiplier=HPARAMS.graph_regularization_multiplier,
    distance_type=HPARAMS.distance_type,
    sum_over_axis=-1)
graph_reg_model = nsl.keras.GraphRegularization(base_reg_model,
                                                graph_reg_config)
graph_reg_model.compile(
    optimizer='adam',
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=['accuracy'])
graph_reg_model.fit(train_dataset, epochs=HPARAMS.train_epochs, verbose=1)
Epoch 1/100
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/framework/indexed_slices.py:446: UserWarning: Converting sparse IndexedSlices(IndexedSlices(indices=Tensor("gradient_tape/GraphRegularization/graph_loss/Reshape_1:0", shape=(None,), dtype=int32), values=Tensor("gradient_tape/GraphRegularization/graph_loss/Reshape:0", shape=(None, 7), dtype=float32), dense_shape=Tensor("gradient_tape/GraphRegularization/graph_loss/Cast:0", shape=(2,), dtype=int32))) to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "shape. This may consume a large amount of memory." % value)
17/17 [==============================] - 2s 4ms/step - loss: 1.9798 - accuracy: 0.1601 - scaled_graph_loss: 0.0373
Epoch 2/100
17/17 [==============================] - 0s 3ms/step - loss: 1.9024 - accuracy: 0.2979 - scaled_graph_loss: 0.0254
Epoch 3/100
17/17 [==============================] - 0s 3ms/step - loss: 1.8623 - accuracy: 0.3160 - scaled_graph_loss: 0.0317
Epoch 4/100
17/17 [==============================] - 0s 3ms/step - loss: 1.8042 - accuracy: 0.3443 - scaled_graph_loss: 0.0498
Epoch 5/100
17/17 [==============================] - 0s 3ms/step - loss: 1.7552 - accuracy: 0.3582 - scaled_graph_loss: 0.0696
Epoch 6/100
17/17 [==============================] - 0s 3ms/step - loss: 1.7012 - accuracy: 0.4084 - scaled_graph_loss: 0.0866
Epoch 7/100
17/17 [==============================] - 0s 3ms/step - loss: 1.6578 - accuracy: 0.4515 - scaled_graph_loss: 0.1114
Epoch 8/100
17/17 [==============================] - 0s 3ms/step - loss: 1.6058 - accuracy: 0.5039 - scaled_graph_loss: 0.1300
Epoch 9/100
17/17 [==============================] - 0s 3ms/step - loss: 1.5498 - accuracy: 0.5434 - scaled_graph_loss: 0.1508
Epoch 10/100
17/17 [==============================] - 0s 3ms/step - loss: 1.5098 - accuracy: 0.6019 - scaled_graph_loss: 0.1651
Epoch 11/100
17/17 [==============================] - 0s 3ms/step - loss: 1.4746 - accuracy: 0.6302 - scaled_graph_loss: 0.1844
Epoch 12/100
17/17 [==============================] - 0s 3ms/step - loss: 1.4315 - accuracy: 0.6520 - scaled_graph_loss: 0.1917
Epoch 13/100
17/17 [==============================] - 0s 3ms/step - loss: 1.3932 - accuracy: 0.6770 - scaled_graph_loss: 0.2024
Epoch 14/100
17/17 [==============================] - 0s 3ms/step - loss: 1.3645 - accuracy: 0.7183 - scaled_graph_loss: 0.2145
Epoch 15/100
17/17 [==============================] - 0s 3ms/step - loss: 1.3265 - accuracy: 0.7369 - scaled_graph_loss: 0.2324
Epoch 16/100
17/17 [==============================] - 0s 3ms/step - loss: 1.3045 - accuracy: 0.7555 - scaled_graph_loss: 0.2358
Epoch 17/100
17/17 [==============================] - 0s 3ms/step - loss: 1.2836 - accuracy: 0.7652 - scaled_graph_loss: 0.2404
Epoch 18/100
17/17 [==============================] - 0s 3ms/step - loss: 1.2456 - accuracy: 0.7898 - scaled_graph_loss: 0.2469
Epoch 19/100
17/17 [==============================] - 0s 3ms/step - loss: 1.2348 - accuracy: 0.8074 - scaled_graph_loss: 0.2615
Epoch 20/100
17/17 [==============================] - 0s 3ms/step - loss: 1.2000 - accuracy: 0.8074 - scaled_graph_loss: 0.2542
Epoch 21/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1994 - accuracy: 0.8260 - scaled_graph_loss: 0.2729
Epoch 22/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1825 - accuracy: 0.8269 - scaled_graph_loss: 0.2676
Epoch 23/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1598 - accuracy: 0.8455 - scaled_graph_loss: 0.2742
Epoch 24/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1543 - accuracy: 0.8534 - scaled_graph_loss: 0.2797
Epoch 25/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1456 - accuracy: 0.8552 - scaled_graph_loss: 0.2714
Epoch 26/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1154 - accuracy: 0.8566 - scaled_graph_loss: 0.2796
Epoch 27/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1150 - accuracy: 0.8687 - scaled_graph_loss: 0.2850
Epoch 28/100
17/17 [==============================] - 0s 3ms/step - loss: 1.1154 - accuracy: 0.8626 - scaled_graph_loss: 0.2772
Epoch 29/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0806 - accuracy: 0.8733 - scaled_graph_loss: 0.2756
Epoch 30/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0828 - accuracy: 0.8626 - scaled_graph_loss: 0.2907
Epoch 31/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0724 - accuracy: 0.8886 - scaled_graph_loss: 0.2834
Epoch 32/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0589 - accuracy: 0.8826 - scaled_graph_loss: 0.2881
Epoch 33/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0490 - accuracy: 0.8872 - scaled_graph_loss: 0.2972
Epoch 34/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0550 - accuracy: 0.8923 - scaled_graph_loss: 0.2935
Epoch 35/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0397 - accuracy: 0.8840 - scaled_graph_loss: 0.2795
Epoch 36/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0360 - accuracy: 0.8891 - scaled_graph_loss: 0.2966
Epoch 37/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0235 - accuracy: 0.8961 - scaled_graph_loss: 0.2890
Epoch 38/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0219 - accuracy: 0.8984 - scaled_graph_loss: 0.2965
Epoch 39/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0168 - accuracy: 0.9044 - scaled_graph_loss: 0.3023
Epoch 40/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0148 - accuracy: 0.9035 - scaled_graph_loss: 0.2984
Epoch 41/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9956 - accuracy: 0.9118 - scaled_graph_loss: 0.2888
Epoch 42/100
17/17 [==============================] - 0s 3ms/step - loss: 1.0019 - accuracy: 0.9021 - scaled_graph_loss: 0.2877
Epoch 43/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9956 - accuracy: 0.9049 - scaled_graph_loss: 0.2912
Epoch 44/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9986 - accuracy: 0.9026 - scaled_graph_loss: 0.3040
Epoch 45/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9939 - accuracy: 0.9067 - scaled_graph_loss: 0.3016
Epoch 46/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9828 - accuracy: 0.9058 - scaled_graph_loss: 0.2877
Epoch 47/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9629 - accuracy: 0.9137 - scaled_graph_loss: 0.2844
Epoch 48/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9645 - accuracy: 0.9146 - scaled_graph_loss: 0.2933
Epoch 49/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9752 - accuracy: 0.9165 - scaled_graph_loss: 0.3013
Epoch 50/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9552 - accuracy: 0.9179 - scaled_graph_loss: 0.2865
Epoch 51/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9539 - accuracy: 0.9193 - scaled_graph_loss: 0.3044
Epoch 52/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9443 - accuracy: 0.9183 - scaled_graph_loss: 0.3010
Epoch 53/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9559 - accuracy: 0.9244 - scaled_graph_loss: 0.2987
Epoch 54/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9497 - accuracy: 0.9225 - scaled_graph_loss: 0.2979
Epoch 55/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9674 - accuracy: 0.9183 - scaled_graph_loss: 0.3034
Epoch 56/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9537 - accuracy: 0.9174 - scaled_graph_loss: 0.2834
Epoch 57/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9341 - accuracy: 0.9188 - scaled_graph_loss: 0.2939
Epoch 58/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9392 - accuracy: 0.9225 - scaled_graph_loss: 0.2998
Epoch 59/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9240 - accuracy: 0.9313 - scaled_graph_loss: 0.3022
Epoch 60/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9368 - accuracy: 0.9267 - scaled_graph_loss: 0.2979
Epoch 61/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9306 - accuracy: 0.9234 - scaled_graph_loss: 0.2952
Epoch 62/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9197 - accuracy: 0.9230 - scaled_graph_loss: 0.2916
Epoch 63/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9360 - accuracy: 0.9206 - scaled_graph_loss: 0.2947
Epoch 64/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9181 - accuracy: 0.9299 - scaled_graph_loss: 0.2996
Epoch 65/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9105 - accuracy: 0.9341 - scaled_graph_loss: 0.2981
Epoch 66/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9014 - accuracy: 0.9323 - scaled_graph_loss: 0.2897
Epoch 67/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9059 - accuracy: 0.9364 - scaled_graph_loss: 0.3083
Epoch 68/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9053 - accuracy: 0.9309 - scaled_graph_loss: 0.2976
Epoch 69/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9099 - accuracy: 0.9258 - scaled_graph_loss: 0.3069
Epoch 70/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9025 - accuracy: 0.9355 - scaled_graph_loss: 0.2890
Epoch 71/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8849 - accuracy: 0.9281 - scaled_graph_loss: 0.2933
Epoch 72/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8959 - accuracy: 0.9323 - scaled_graph_loss: 0.2918
Epoch 73/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9074 - accuracy: 0.9248 - scaled_graph_loss: 0.3065
Epoch 74/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8845 - accuracy: 0.9369 - scaled_graph_loss: 0.2874
Epoch 75/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8873 - accuracy: 0.9401 - scaled_graph_loss: 0.2996
Epoch 76/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8942 - accuracy: 0.9327 - scaled_graph_loss: 0.3086
Epoch 77/100
17/17 [==============================] - 0s 3ms/step - loss: 0.9052 - accuracy: 0.9253 - scaled_graph_loss: 0.2986
Epoch 78/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8811 - accuracy: 0.9336 - scaled_graph_loss: 0.2948
Epoch 79/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8896 - accuracy: 0.9276 - scaled_graph_loss: 0.2919
Epoch 80/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8853 - accuracy: 0.9313 - scaled_graph_loss: 0.2944
Epoch 81/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8875 - accuracy: 0.9323 - scaled_graph_loss: 0.2925
Epoch 82/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8639 - accuracy: 0.9323 - scaled_graph_loss: 0.2967
Epoch 83/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8820 - accuracy: 0.9332 - scaled_graph_loss: 0.3047
Epoch 84/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8752 - accuracy: 0.9346 - scaled_graph_loss: 0.2942
Epoch 85/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8651 - accuracy: 0.9374 - scaled_graph_loss: 0.3066
Epoch 86/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8765 - accuracy: 0.9332 - scaled_graph_loss: 0.2881
Epoch 87/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8691 - accuracy: 0.9420 - scaled_graph_loss: 0.3030
Epoch 88/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8631 - accuracy: 0.9374 - scaled_graph_loss: 0.2916
Epoch 89/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8651 - accuracy: 0.9392 - scaled_graph_loss: 0.3032
Epoch 90/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8632 - accuracy: 0.9420 - scaled_graph_loss: 0.3019
Epoch 91/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8600 - accuracy: 0.9425 - scaled_graph_loss: 0.2965
Epoch 92/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8569 - accuracy: 0.9346 - scaled_graph_loss: 0.2977
Epoch 93/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8704 - accuracy: 0.9374 - scaled_graph_loss: 0.3083
Epoch 94/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8562 - accuracy: 0.9406 - scaled_graph_loss: 0.2883
Epoch 95/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8545 - accuracy: 0.9415 - scaled_graph_loss: 0.3030
Epoch 96/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8592 - accuracy: 0.9332 - scaled_graph_loss: 0.2927
Epoch 97/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8503 - accuracy: 0.9397 - scaled_graph_loss: 0.2927
Epoch 98/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8434 - accuracy: 0.9462 - scaled_graph_loss: 0.2937
Epoch 99/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8578 - accuracy: 0.9374 - scaled_graph_loss: 0.3064
Epoch 100/100
17/17 [==============================] - 0s 3ms/step - loss: 0.8504 - accuracy: 0.9411 - scaled_graph_loss: 0.3043
<keras.callbacks.History at 0x7f70041be650>

Evaluasi model MLP dengan regularisasi grafik

eval_results = dict(
    zip(graph_reg_model.metrics_names,
        graph_reg_model.evaluate(test_dataset, steps=HPARAMS.eval_steps)))
print_metrics('MLP + graph regularization', eval_results)
5/5 [==============================] - 0s 5ms/step - loss: 0.8884 - accuracy: 0.7957


Eval accuracy for  MLP + graph regularization :  0.7956600189208984
Eval loss for  MLP + graph regularization :  0.8883611559867859

Akurasi grafik-regularized model adalah sekitar 2-3% lebih tinggi dari model dasar ( base_model ).

Kesimpulan

Kami telah mendemonstrasikan penggunaan regularisasi graf untuk klasifikasi dokumen pada graf kutipan alami (Cora) menggunakan kerangka kerja Neural Structured Learning (NSL). Kami tutorial maju melibatkan sintesis grafik berdasarkan embeddings sampel sebelum melatih jaringan saraf dengan grafik regularisasi. Pendekatan ini berguna jika input tidak mengandung grafik eksplisit.

Kami mendorong pengguna untuk bereksperimen lebih lanjut dengan memvariasikan jumlah pengawasan serta mencoba arsitektur saraf yang berbeda untuk regularisasi grafik.