کمک به حفاظت از دیواره بزرگ مرجانی با TensorFlow در Kaggle اضافه کردن چالش

شبکه های افزودنی TensorFlow: NMT دنباله به دنباله با مکانیسم توجه

مشاهده در TensorFlow.org در Google Colab اجرا شود مشاهده منبع در GitHub دانلود دفترچه یادداشت

بررسی اجمالی

این نوت بوک می دهد یک مقدمه کوتاه به توالی به توالی مدل معماری در این noteboook شما به طور گسترده پوشش چهار موضوع ضروری برای عصبی ترجمه ماشینی:

  • پاکسازی داده ها
  • آماده سازی داده ها
  • مدل ترجمه عصبی با توجه
  • ترجمه نهایی با tf.addons.seq2seq.BasicDecoder و tf.addons.seq2seq.BeamSearchDecoder

ایده اصلی پشت چنین مدلی فقط معماری رمزگذار-رمزگشا است. این شبکه‌ها معمولاً برای کارهای مختلفی مانند خلاصه‌سازی متن، ترجمه ماشینی، شرح تصویر، و غیره استفاده می‌شوند. این آموزش درک عملی مفهوم را ارائه می‌کند، و در صورت لزوم، اصطلاحات فنی را توضیح می‌دهد. شما روی وظیفه ترجمه ماشین عصبی (NMT) تمرکز می کنید که اولین بستر آزمایشی برای مدل های seq2seq بود.

برپایی

pip install tensorflow-addons==0.11.2
import tensorflow as tf
import tensorflow_addons as tfa

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split

import unicodedata
import re
import numpy as np
import os
import io
import time

پاکسازی داده ها و آماده سازی داده ها

شما یک مجموعه داده زبان ارائه شده توسط استفاده از http://www.manythings.org/anki/ این مجموعه داده شامل جفت ترجمه زبان در قالب:


  May I borrow this book?    ¿Puedo tomar prestado este libro?

زبان های مختلفی وجود دارد، اما شما از مجموعه داده انگلیسی-اسپانیایی استفاده خواهید کرد. پس از دانلود مجموعه داده، مراحلی که برای آماده سازی داده ها انجام خواهید داد در اینجا آمده است:

  1. به هر جمله یک نشانه شروع و پایان اضافه کنید.
  2. جملات را با حذف کاراکترهای خاص پاک کنید.
  3. یک واژگان با نمایه کلمه (نقشه برداری از کلمه → id) و نمایه کلمه معکوس (نقشه برداری از id → word) ایجاد کنید.
  4. هر جمله را به حداکثر طول اضافه کنید. (چرا؟ باید حداکثر طول ورودی‌های رمزگذارهای تکراری را تعیین کنید)
def download_nmt():
    path_to_zip = tf.keras.utils.get_file(
    'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
    extract=True)

    path_to_file = os.path.dirname(path_to_zip)+"/spa-eng/spa.txt"
    return path_to_file

یک کلاس NMTDataset با توابع لازم برای دنبال کردن مراحل 1 تا 4 تعریف کنید.

call() باز خواهد گشت:

  1. train_dataset و val_dataset : tf.data.Dataset اشیاء
  2. inp_lang_tokenizer و targ_lang_tokenizer : tf.keras.preprocessing.text.Tokenizer اشیاء
class NMTDataset:
    def __init__(self, problem_type='en-spa'):
        self.problem_type = 'en-spa'
        self.inp_lang_tokenizer = None
        self.targ_lang_tokenizer = None


    def unicode_to_ascii(self, s):
        return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')

    ## Step 1 and Step 2 
    def preprocess_sentence(self, w):
        w = self.unicode_to_ascii(w.lower().strip())

        # creating a space between a word and the punctuation following it
        # eg: "he is a boy." => "he is a boy ."
        # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation
        w = re.sub(r"([?.!,¿])", r" \1 ", w)
        w = re.sub(r'[" "]+', " ", w)

        # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",")
        w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)

        w = w.strip()

        # adding a start and an end token to the sentence
        # so that the model know when to start and stop predicting.
        w = '<start> ' + w + ' <end>'
        return w

    def create_dataset(self, path, num_examples):
        # path : path to spa-eng.txt file
        # num_examples : Limit the total number of training example for faster training (set num_examples = len(lines) to use full data)
        lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
        word_pairs = [[self.preprocess_sentence(w) for w in l.split('\t')]  for l in lines[:num_examples]]

        return zip(*word_pairs)

    # Step 3 and Step 4
    def tokenize(self, lang):
        # lang = list of sentences in a language

        # print(len(lang), "example sentence: {}".format(lang[0]))
        lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='', oov_token='<OOV>')
        lang_tokenizer.fit_on_texts(lang)

        ## tf.keras.preprocessing.text.Tokenizer.texts_to_sequences converts string (w1, w2, w3, ......, wn) 
        ## to a list of correspoding integer ids of words (id_w1, id_w2, id_w3, ...., id_wn)
        tensor = lang_tokenizer.texts_to_sequences(lang) 

        ## tf.keras.preprocessing.sequence.pad_sequences takes argument a list of integer id sequences 
        ## and pads the sequences to match the longest sequences in the given input
        tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post')

        return tensor, lang_tokenizer

    def load_dataset(self, path, num_examples=None):
        # creating cleaned input, output pairs
        targ_lang, inp_lang = self.create_dataset(path, num_examples)

        input_tensor, inp_lang_tokenizer = self.tokenize(inp_lang)
        target_tensor, targ_lang_tokenizer = self.tokenize(targ_lang)

        return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer

    def call(self, num_examples, BUFFER_SIZE, BATCH_SIZE):
        file_path = download_nmt()
        input_tensor, target_tensor, self.inp_lang_tokenizer, self.targ_lang_tokenizer = self.load_dataset(file_path, num_examples)

        input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)

        train_dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train))
        train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)

        val_dataset = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val))
        val_dataset = val_dataset.batch(BATCH_SIZE, drop_remainder=True)

        return train_dataset, val_dataset, self.inp_lang_tokenizer, self.targ_lang_tokenizer
BUFFER_SIZE = 32000
BATCH_SIZE = 64
# Let's limit the #training examples for faster training
num_examples = 30000

dataset_creator = NMTDataset('en-spa')
train_dataset, val_dataset, inp_lang, targ_lang = dataset_creator.call(num_examples, BUFFER_SIZE, BATCH_SIZE)
example_input_batch, example_target_batch = next(iter(train_dataset))
example_input_batch.shape, example_target_batch.shape
(TensorShape([64, 16]), TensorShape([64, 11]))

برخی از پارامترهای مهم

vocab_inp_size = len(inp_lang.word_index)+1
vocab_tar_size = len(targ_lang.word_index)+1
max_length_input = example_input_batch.shape[1]
max_length_output = example_target_batch.shape[1]

embedding_dim = 256
units = 1024
steps_per_epoch = num_examples//BATCH_SIZE
print("max_length_english, max_length_spanish, vocab_size_english, vocab_size_spanish")
max_length_input, max_length_output, vocab_inp_size, vocab_tar_size
max_length_spanish, max_length_english, vocab_size_spanish, vocab_size_english
(16, 11, 9415, 4936)
##### 

class Encoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
    super(Encoder, self).__init__()
    self.batch_sz = batch_sz
    self.enc_units = enc_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

    ##-------- LSTM layer in Encoder ------- ##
    self.lstm_layer = tf.keras.layers.LSTM(self.enc_units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')



  def call(self, x, hidden):
    x = self.embedding(x)
    output, h, c = self.lstm_layer(x, initial_state = hidden)
    return output, h, c

  def initialize_hidden_state(self):
    return [tf.zeros((self.batch_sz, self.enc_units)), tf.zeros((self.batch_sz, self.enc_units))]
## Test Encoder Stack

encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)


# sample input
sample_hidden = encoder.initialize_hidden_state()
sample_output, sample_h, sample_c = encoder(example_input_batch, sample_hidden)
print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))
print ('Encoder h vecotr shape: (batch size, units) {}'.format(sample_h.shape))
print ('Encoder c vector shape: (batch size, units) {}'.format(sample_c.shape))
Encoder output shape: (batch size, sequence length, units) (64, 16, 1024)
Encoder h vecotr shape: (batch size, units) (64, 1024)
Encoder c vector shape: (batch size, units) (64, 1024)
class Decoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz, attention_type='luong'):
    super(Decoder, self).__init__()
    self.batch_sz = batch_sz
    self.dec_units = dec_units
    self.attention_type = attention_type

    # Embedding Layer
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

    #Final Dense layer on which softmax will be applied
    self.fc = tf.keras.layers.Dense(vocab_size)

    # Define the fundamental cell for decoder recurrent structure
    self.decoder_rnn_cell = tf.keras.layers.LSTMCell(self.dec_units)



    # Sampler
    self.sampler = tfa.seq2seq.sampler.TrainingSampler()

    # Create attention mechanism with memory = None
    self.attention_mechanism = self.build_attention_mechanism(self.dec_units, 
                                                              None, self.batch_sz*[max_length_input], self.attention_type)

    # Wrap attention mechanism with the fundamental rnn cell of decoder
    self.rnn_cell = self.build_rnn_cell(batch_sz)

    # Define the decoder with respect to fundamental rnn cell
    self.decoder = tfa.seq2seq.BasicDecoder(self.rnn_cell, sampler=self.sampler, output_layer=self.fc)


  def build_rnn_cell(self, batch_sz):
    rnn_cell = tfa.seq2seq.AttentionWrapper(self.decoder_rnn_cell, 
                                  self.attention_mechanism, attention_layer_size=self.dec_units)
    return rnn_cell

  def build_attention_mechanism(self, dec_units, memory, memory_sequence_length, attention_type='luong'):
    # ------------- #
    # typ: Which sort of attention (Bahdanau, Luong)
    # dec_units: final dimension of attention outputs 
    # memory: encoder hidden states of shape (batch_size, max_length_input, enc_units)
    # memory_sequence_length: 1d array of shape (batch_size) with every element set to max_length_input (for masking purpose)

    if(attention_type=='bahdanau'):
      return tfa.seq2seq.BahdanauAttention(units=dec_units, memory=memory, memory_sequence_length=memory_sequence_length)
    else:
      return tfa.seq2seq.LuongAttention(units=dec_units, memory=memory, memory_sequence_length=memory_sequence_length)

  def build_initial_state(self, batch_sz, encoder_state, Dtype):
    decoder_initial_state = self.rnn_cell.get_initial_state(batch_size=batch_sz, dtype=Dtype)
    decoder_initial_state = decoder_initial_state.clone(cell_state=encoder_state)
    return decoder_initial_state


  def call(self, inputs, initial_state):
    x = self.embedding(inputs)
    outputs, _, _ = self.decoder(x, initial_state=initial_state, sequence_length=self.batch_sz*[max_length_output-1])
    return outputs
# Test decoder stack

decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE, 'luong')
sample_x = tf.random.uniform((BATCH_SIZE, max_length_output))
decoder.attention_mechanism.setup_memory(sample_output)
initial_state = decoder.build_initial_state(BATCH_SIZE, [sample_h, sample_c], tf.float32)


sample_decoder_outputs = decoder(sample_x, initial_state)

print("Decoder Outputs Shape: ", sample_decoder_outputs.rnn_output.shape)
Decoder Outputs Shape:  (64, 10, 4936)

بهینه ساز و تابع ضرر را تعریف کنید

optimizer = tf.keras.optimizers.Adam()


def loss_function(real, pred):
  # real shape = (BATCH_SIZE, max_length_output)
  # pred shape = (BATCH_SIZE, max_length_output, tar_vocab_size )
  cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
  loss = cross_entropy(y_true=real, y_pred=pred)
  mask = tf.logical_not(tf.math.equal(real,0))   #output 0 for y=0 else output 1
  mask = tf.cast(mask, dtype=loss.dtype)  
  loss = mask* loss
  loss = tf.reduce_mean(loss)
  return loss

نقاط بازرسی (ذخیره مبتنی بر شی)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
                                 encoder=encoder,
                                 decoder=decoder)

عملیات یک قطار_گام

@tf.function
def train_step(inp, targ, enc_hidden):
  loss = 0

  with tf.GradientTape() as tape:
    enc_output, enc_h, enc_c = encoder(inp, enc_hidden)


    dec_input = targ[ : , :-1 ] # Ignore <end> token
    real = targ[ : , 1: ]         # ignore <start> token

    # Set the AttentionMechanism object with encoder_outputs
    decoder.attention_mechanism.setup_memory(enc_output)

    # Create AttentionWrapperState as initial_state for decoder
    decoder_initial_state = decoder.build_initial_state(BATCH_SIZE, [enc_h, enc_c], tf.float32)
    pred = decoder(dec_input, decoder_initial_state)
    logits = pred.rnn_output
    loss = loss_function(real, logits)

  variables = encoder.trainable_variables + decoder.trainable_variables
  gradients = tape.gradient(loss, variables)
  optimizer.apply_gradients(zip(gradients, variables))

  return loss

مدل را آموزش دهید

EPOCHS = 10

for epoch in range(EPOCHS):
  start = time.time()

  enc_hidden = encoder.initialize_hidden_state()
  total_loss = 0
  # print(enc_hidden[0].shape, enc_hidden[1].shape)

  for (batch, (inp, targ)) in enumerate(train_dataset.take(steps_per_epoch)):
    batch_loss = train_step(inp, targ, enc_hidden)
    total_loss += batch_loss

    if batch % 100 == 0:
      print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
                                                   batch,
                                                   batch_loss.numpy()))
  # saving (checkpoint) the model every 2 epochs
  if (epoch + 1) % 2 == 0:
    checkpoint.save(file_prefix = checkpoint_prefix)

  print('Epoch {} Loss {:.4f}'.format(epoch + 1,
                                      total_loss / steps_per_epoch))
  print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))
Epoch 1 Batch 0 Loss 5.1692
Epoch 1 Batch 100 Loss 2.2288
Epoch 1 Batch 200 Loss 1.9930
Epoch 1 Batch 300 Loss 1.7783
Epoch 1 Loss 1.6975
Time taken for 1 epoch 37.26002788543701 sec

Epoch 2 Batch 0 Loss 1.6408
Epoch 2 Batch 100 Loss 1.5767
Epoch 2 Batch 200 Loss 1.4054
Epoch 2 Batch 300 Loss 1.3755
Epoch 2 Loss 1.1412
Time taken for 1 epoch 30.0094051361084 sec

Epoch 3 Batch 0 Loss 1.0296
Epoch 3 Batch 100 Loss 1.0306
Epoch 3 Batch 200 Loss 1.0675
Epoch 3 Batch 300 Loss 0.9574
Epoch 3 Loss 0.8037
Time taken for 1 epoch 28.983767986297607 sec

Epoch 4 Batch 0 Loss 0.5923
Epoch 4 Batch 100 Loss 0.7533
Epoch 4 Batch 200 Loss 0.7397
Epoch 4 Batch 300 Loss 0.6779
Epoch 4 Loss 0.5419
Time taken for 1 epoch 29.649972200393677 sec

Epoch 5 Batch 0 Loss 0.4320
Epoch 5 Batch 100 Loss 0.4349
Epoch 5 Batch 200 Loss 0.4686
Epoch 5 Batch 300 Loss 0.4748
Epoch 5 Loss 0.3827
Time taken for 1 epoch 29.06334638595581 sec

Epoch 6 Batch 0 Loss 0.3422
Epoch 6 Batch 100 Loss 0.3052
Epoch 6 Batch 200 Loss 0.3288
Epoch 6 Batch 300 Loss 0.3216
Epoch 6 Loss 0.2814
Time taken for 1 epoch 29.57170796394348 sec

Epoch 7 Batch 0 Loss 0.2129
Epoch 7 Batch 100 Loss 0.2382
Epoch 7 Batch 200 Loss 0.2406
Epoch 7 Batch 300 Loss 0.2792
Epoch 7 Loss 0.2162
Time taken for 1 epoch 28.95500087738037 sec

Epoch 8 Batch 0 Loss 0.2073
Epoch 8 Batch 100 Loss 0.2095
Epoch 8 Batch 200 Loss 0.1962
Epoch 8 Batch 300 Loss 0.1879
Epoch 8 Loss 0.1794
Time taken for 1 epoch 29.70877432823181 sec

Epoch 9 Batch 0 Loss 0.1517
Epoch 9 Batch 100 Loss 0.2231
Epoch 9 Batch 200 Loss 0.2203
Epoch 9 Batch 300 Loss 0.2282
Epoch 9 Loss 0.1496
Time taken for 1 epoch 29.20821261405945 sec

Epoch 10 Batch 0 Loss 0.1204
Epoch 10 Batch 100 Loss 0.1370
Epoch 10 Batch 200 Loss 0.1778
Epoch 10 Batch 300 Loss 0.2069
Epoch 10 Loss 0.1316
Time taken for 1 epoch 29.576894283294678 sec

از tf-addons BasicDecoder برای رمزگشایی استفاده کنید

def evaluate_sentence(sentence):
  sentence = dataset_creator.preprocess_sentence(sentence)

  inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
  inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                          maxlen=max_length_input,
                                                          padding='post')
  inputs = tf.convert_to_tensor(inputs)
  inference_batch_size = inputs.shape[0]
  result = ''

  enc_start_state = [tf.zeros((inference_batch_size, units)), tf.zeros((inference_batch_size,units))]
  enc_out, enc_h, enc_c = encoder(inputs, enc_start_state)

  dec_h = enc_h
  dec_c = enc_c

  start_tokens = tf.fill([inference_batch_size], targ_lang.word_index['<start>'])
  end_token = targ_lang.word_index['<end>']

  greedy_sampler = tfa.seq2seq.GreedyEmbeddingSampler()

  # Instantiate BasicDecoder object
  decoder_instance = tfa.seq2seq.BasicDecoder(cell=decoder.rnn_cell, sampler=greedy_sampler, output_layer=decoder.fc)
  # Setup Memory in decoder stack
  decoder.attention_mechanism.setup_memory(enc_out)

  # set decoder_initial_state
  decoder_initial_state = decoder.build_initial_state(inference_batch_size, [enc_h, enc_c], tf.float32)


  ### Since the BasicDecoder wraps around Decoder's rnn cell only, you have to ensure that the inputs to BasicDecoder 
  ### decoding step is output of embedding layer. tfa.seq2seq.GreedyEmbeddingSampler() takes care of this. 
  ### You only need to get the weights of embedding layer, which can be done by decoder.embedding.variables[0] and pass this callabble to BasicDecoder's call() function

  decoder_embedding_matrix = decoder.embedding.variables[0]

  outputs, _, _ = decoder_instance(decoder_embedding_matrix, start_tokens = start_tokens, end_token= end_token, initial_state=decoder_initial_state)
  return outputs.sample_id.numpy()

def translate(sentence):
  result = evaluate_sentence(sentence)
  print(result)
  result = targ_lang.sequences_to_texts(result)
  print('Input: %s' % (sentence))
  print('Predicted translation: {}'.format(result))

آخرین بازرسی و تست را بازیابی کنید

# restoring the latest checkpoint in checkpoint_dir
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f9499417390>
translate(u'hace mucho frio aqui.')
[[ 11  12  49 224  40   4   3]]
Input: hace mucho frio aqui.
Predicted translation: ['it s very pretty here . <end>']
translate(u'esta es mi vida.')
[[ 20   9  22 190   4   3]]
Input: esta es mi vida.
Predicted translation: ['this is my life . <end>']
translate(u'¿todavia estan en casa?')
[[25  7 90  8  3]]
Input: ¿todavia estan en casa?
Predicted translation: ['are you home ? <end>']
# wrong translation
translate(u'trata de averiguarlo.')
[[126  16 892  11  75   4   3]]
Input: trata de averiguarlo.
Predicted translation: ['try to figure it out . <end>']

از tf-addons BeamSearchDecoder استفاده کنید

def beam_evaluate_sentence(sentence, beam_width=3):
  sentence = dataset_creator.preprocess_sentence(sentence)

  inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
  inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                          maxlen=max_length_input,
                                                          padding='post')
  inputs = tf.convert_to_tensor(inputs)
  inference_batch_size = inputs.shape[0]
  result = ''

  enc_start_state = [tf.zeros((inference_batch_size, units)), tf.zeros((inference_batch_size,units))]
  enc_out, enc_h, enc_c = encoder(inputs, enc_start_state)

  dec_h = enc_h
  dec_c = enc_c

  start_tokens = tf.fill([inference_batch_size], targ_lang.word_index['<start>'])
  end_token = targ_lang.word_index['<end>']

  # From official documentation
  # NOTE If you are using the BeamSearchDecoder with a cell wrapped in AttentionWrapper, then you must ensure that:
  # The encoder output has been tiled to beam_width via tfa.seq2seq.tile_batch (NOT tf.tile).
  # The batch_size argument passed to the get_initial_state method of this wrapper is equal to true_batch_size * beam_width.
  # The initial state created with get_initial_state above contains a cell_state value containing properly tiled final state from the encoder.

  enc_out = tfa.seq2seq.tile_batch(enc_out, multiplier=beam_width)
  decoder.attention_mechanism.setup_memory(enc_out)
  print("beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] :", enc_out.shape)

  # set decoder_inital_state which is an AttentionWrapperState considering beam_width
  hidden_state = tfa.seq2seq.tile_batch([enc_h, enc_c], multiplier=beam_width)
  decoder_initial_state = decoder.rnn_cell.get_initial_state(batch_size=beam_width*inference_batch_size, dtype=tf.float32)
  decoder_initial_state = decoder_initial_state.clone(cell_state=hidden_state)

  # Instantiate BeamSearchDecoder
  decoder_instance = tfa.seq2seq.BeamSearchDecoder(decoder.rnn_cell,beam_width=beam_width, output_layer=decoder.fc)
  decoder_embedding_matrix = decoder.embedding.variables[0]

  # The BeamSearchDecoder object's call() function takes care of everything.
  outputs, final_state, sequence_lengths = decoder_instance(decoder_embedding_matrix, start_tokens=start_tokens, end_token=end_token, initial_state=decoder_initial_state)
  # outputs is tfa.seq2seq.FinalBeamSearchDecoderOutput object. 
  # The final beam predictions are stored in outputs.predicted_id
  # outputs.beam_search_decoder_output is a tfa.seq2seq.BeamSearchDecoderOutput object which keep tracks of beam_scores and parent_ids while performing a beam decoding step
  # final_state = tfa.seq2seq.BeamSearchDecoderState object.
  # Sequence Length = [inference_batch_size, beam_width] details the maximum length of the beams that are generated


  # outputs.predicted_id.shape = (inference_batch_size, time_step_outputs, beam_width)
  # outputs.beam_search_decoder_output.scores.shape = (inference_batch_size, time_step_outputs, beam_width)
  # Convert the shape of outputs and beam_scores to (inference_batch_size, beam_width, time_step_outputs)
  final_outputs = tf.transpose(outputs.predicted_ids, perm=(0,2,1))
  beam_scores = tf.transpose(outputs.beam_search_decoder_output.scores, perm=(0,2,1))

  return final_outputs.numpy(), beam_scores.numpy()
def beam_translate(sentence):
  result, beam_scores = beam_evaluate_sentence(sentence)
  print(result.shape, beam_scores.shape)
  for beam, score in zip(result, beam_scores):
    print(beam.shape, score.shape)
    output = targ_lang.sequences_to_texts(beam)
    output = [a[:a.index('<end>')] for a in output]
    beam_score = [a.sum() for a in score]
    print('Input: %s' % (sentence))
    for i in range(len(output)):
      print('{} Predicted translation: {}  {}'.format(i+1, output[i], beam_score[i]))
beam_translate(u'hace mucho frio aqui.')
beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] : (3, 16, 1024)
(1, 3, 7) (1, 3, 7)
(3, 7) (3, 7)
Input: hace mucho frio aqui.
1 Predicted translation: it s very pretty here .   -4.117094039916992
2 Predicted translation: it s very cold here .   -14.85302734375
3 Predicted translation: it s very pretty news .   -25.59416389465332
beam_translate(u'¿todavia estan en casa?')
beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] : (3, 16, 1024)
(1, 3, 7) (1, 3, 7)
(3, 7) (3, 7)
Input: ¿todavia estan en casa?
1 Predicted translation: are you still home ?   -4.036754131317139
2 Predicted translation: are you still at home ?   -15.306867599487305
3 Predicted translation: are you still go home ?   -20.533388137817383