Google I / O là một kết quả hoàn hảo! Cập nhật các phiên TensorFlow Xem phiên

Soạn thảo mô hình Rừng quyết định và Mạng lưới thần kinh

Xem trên TensorFlow.org Chạy trong Google Colab Xem trên GitHub Tải xuống sổ ghi chép API chức năng của Keras

Giới thiệu

Chào mừng bạn đến mô hình thành phần hướng dẫn cho Rừng Quyết định TensorFlow (TF-DF). Máy tính xách tay này cho thấy bạn làm thế nào để soạn nhiều rừng quyết định và mô hình mạng thần kinh với nhau bằng một lớp tiền xử lý chung và các API chức năng Keras .

Bạn có thể muốn tổng hợp các mô hình với nhau để cải thiện hiệu suất dự đoán (tập hợp), để tận dụng tốt nhất các công nghệ mô hình khác nhau (tập hợp mô hình không đồng nhất), để đào tạo các phần khác nhau của mô hình trên các tập dữ liệu khác nhau (ví dụ: đào tạo trước) hoặc để tạo mô hình xếp chồng lên nhau (ví dụ một mô hình hoạt động dựa trên các dự đoán của một mô hình khác).

Hướng dẫn này bao gồm một trường hợp sử dụng nâng cao của thành phần mô hình bằng API chức năng. Bạn có thể tìm thấy ví dụ cho các kịch bản đơn giản của phần mô hình trong "tính năng tiền xử lý" phần này hướng dẫn và trong "sử dụng một văn bản pretrained nhúng" phần này hướng dẫn .

Đây là cấu trúc của mô hình bạn sẽ xây dựng:

svg

Mô hình sáng tác của bạn có ba giai đoạn:

  1. Giai đoạn đầu tiên là một lớp tiền xử lý bao gồm một mạng nơ-ron và chung cho tất cả các mô hình trong giai đoạn tiếp theo. Trên thực tế, một lớp tiền xử lý như vậy có thể là một lớp nhúng được đào tạo trước để tinh chỉnh hoặc một mạng nơ-ron được khởi tạo ngẫu nhiên.
  2. Giai đoạn thứ hai là một tập hợp của hai mô hình rừng quyết định và hai mô hình mạng nơ-ron.
  3. Giai đoạn cuối cùng tính trung bình các dự đoán của các mô hình trong giai đoạn thứ hai. Nó không chứa bất kỳ trọng lượng có thể học được.

Các mạng lưới thần kinh được đào tạo bằng cách sử dụng thuật toán lan truyền ngược và gradient descent. Thuật toán này có hai thuộc tính quan trọng: (1) Lớp của mạng nơ-ron có thể được huấn luyện nếu nó nhận được một gradient tổn thất (chính xác hơn là gradient tổn thất theo đầu ra của lớp) và (2) thuật toán "truyền" mất gradient từ đầu ra của lớp đến đầu vào của lớp (đây là "quy tắc dây chuyền"). Vì hai lý do này, Backpropagation có thể huấn luyện nhiều lớp mạng nơ-ron chồng lên nhau.

Trong ví dụ này, các khu rừng quyết định được huấn luyện với rừng ngẫu nhiên (RF) thuật toán. Không giống như Backpropagation, việc đào tạo RF không "truyền" gradient tổn thất từ ​​đầu ra đến đầu vào của nó. Vì lý do này, thuật toán RF cổ điển không thể được sử dụng để đào tạo hoặc tinh chỉnh mạng nơ-ron bên dưới. Nói cách khác, các giai đoạn "rừng quyết định" không thể được sử dụng để đào tạo "Khối tiền xử lý NN có thể học được".

  1. Đào tạo giai đoạn tiền xử lý và mạng nơ-ron.
  2. Huấn luyện các giai đoạn rừng quyết định.

Cài đặt rừng quyết định TensorFlow

Cài đặt TF-DF bằng cách chạy ô sau.

pip install tensorflow_decision_forests -U --quiet

Cài đặt Wurlitzer để hiển thị các bản ghi đào tạo chi tiết. Điều này chỉ cần thiết trong sổ ghi chép.

pip install wurlitzer -U --quiet

Nhập thư viện

import tensorflow_decision_forests as tfdf

import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt

try:
  from wurlitzer import sys_pipes
except:
  from colabtools.googlelog import CaptureLog as sys_pipes

from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible.
WARNING:root:TF Parameter Server distributed training not available.

Dataset

Bạn sẽ sử dụng một tập dữ liệu tổng hợp đơn giản trong hướng dẫn này để diễn giải mô hình cuối cùng dễ dàng hơn.

def make_dataset(num_examples, num_features, seed=1234):
  np.random.seed(seed)
  features = np.random.uniform(-1, 1, size=(num_examples, num_features))
  noise = np.random.uniform(size=(num_examples))

  left_side = np.sqrt(
      np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
  right_side = features[:, 2] * 0.7 + np.sin(
      features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5

  labels = left_side <= right_side
  return features, labels.astype(int)

Tạo một số ví dụ:

make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 ,  0.24421754, -0.12454452,  0.57071717],
        [ 0.55995162, -0.45481479, -0.44707149,  0.60374436],
        [ 0.91627871,  0.75186527, -0.28436546,  0.00199025],
        [ 0.36692587,  0.42540405, -0.25949849,  0.12239237],
        [ 0.00616633, -0.9724631 ,  0.54565324,  0.76528238]]),
 array([0, 0, 0, 1, 0]))

Bạn cũng có thể vẽ sơ đồ cho chúng để có ý tưởng về mô hình tổng hợp:

plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)

plt.rcParams["figure.figsize"] = [8, 8]
common_args = dict(c=plot_label, s=1.0, alpha=0.5)

plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)

plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)

plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)

plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7f6b78d20e90>

png

Lưu ý rằng mô hình này trơn và không thẳng hàng theo trục. Điều này sẽ tạo lợi thế cho các mô hình mạng nơ-ron. Điều này là do mạng nơ-ron dễ dàng hơn so với cây quyết định có các ranh giới quyết định tròn và không thẳng hàng.

Mặt khác, chúng tôi sẽ đào tạo mô hình trên một tập dữ liệu nhỏ với 2500 ví dụ. Điều này sẽ tạo lợi thế cho các mô hình rừng quyết định. Điều này là do rừng quyết định hiệu quả hơn nhiều, sử dụng tất cả các thông tin có sẵn từ các ví dụ (rừng quyết định là "hiệu quả mẫu").

Tổ hợp mạng nơ-ron và rừng quyết định của chúng tôi sẽ sử dụng những gì tốt nhất của cả hai thế giới.

Hãy tạo một đoàn tàu và kiểm tra tf.data.Dataset :

def make_tf_dataset(batch_size=64, **args):
  features, labels = make_dataset(**args)
  return tf.data.Dataset.from_tensor_slices(
      (features, labels)).batch(batch_size)


num_features = 10

train_dataset = make_tf_dataset(
    num_examples=2500, num_features=num_features, batch_size=64, seed=1234)
test_dataset = make_tf_dataset(
    num_examples=10000, num_features=num_features, batch_size=64, seed=5678)

Cấu trúc mô hình

Xác định cấu trúc mô hình như sau:

# Input features.
raw_features = tf.keras.layers.Input(shape=(num_features,))

# Stage 1
# =======

# Common learnable pre-processing
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)

# Stage 2
# =======

# Model #1: NN
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)

# Model #2: NN
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)


def seed_advanced_argument(seed):
  """Create a seed argument for a TF-DF model.

  TODO(gbm): Surface the "seed" argument to the model constructor directly.
  """
  return tfdf.keras.AdvancedArguments(
      yggdrasil_training_config=tfdf.keras.core.YggdrasilTrainingConfig(
          random_seed=seed))


# Model #3: DF
model_3 = tfdf.keras.RandomForestModel(
    num_trees=1000, advanced_arguments=seed_advanced_argument(1234))
m3_pred = model_3(preprocess_features)

# Model #4: DF
model_4 = tfdf.keras.RandomForestModel(
    num_trees=1000,
    #split_axis="SPARSE_OBLIQUE", # Uncomment this line to increase the quality of this model
    advanced_arguments=seed_advanced_argument(4567))
m4_pred = model_4(preprocess_features)

# Since TF-DF uses deterministic learning algorithms, you should set the model's
# training seed to different values otherwise both
# `tfdf.keras.RandomForestModel` will be exactly the same.

# Stage 3
# =======

mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
    tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)

# Keras Models
# ============

ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)

Trước khi đào tạo mô hình, bạn có thể vẽ sơ đồ để kiểm tra xem nó có giống với sơ đồ ban đầu hay không.

from keras.utils.vis_utils import plot_model

plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)

png

Đào tạo người mẫu

Đầu tiên đào tạo tiền xử lý và hai lớp mạng nơ-ron bằng cách sử dụng thuật toán lan truyền ngược.

%%time
ensemble_nn_only.compile(
        optimizer=tf.keras.optimizers.Adam(),
        loss=tf.keras.losses.BinaryCrossentropy(),
        metrics=["accuracy"])

ensemble_nn_only.fit(train_dataset, epochs=20, validation_data=test_dataset)
Epoch 1/20
40/40 [==============================] - 1s 13ms/step - loss: 0.6115 - accuracy: 0.7308 - val_loss: 0.5857 - val_accuracy: 0.7407
Epoch 2/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5645 - accuracy: 0.7484 - val_loss: 0.5487 - val_accuracy: 0.7391
Epoch 3/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5310 - accuracy: 0.7496 - val_loss: 0.5237 - val_accuracy: 0.7392
Epoch 4/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5074 - accuracy: 0.7500 - val_loss: 0.5055 - val_accuracy: 0.7391
Epoch 5/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4887 - accuracy: 0.7496 - val_loss: 0.4901 - val_accuracy: 0.7397
Epoch 6/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4725 - accuracy: 0.7520 - val_loss: 0.4763 - val_accuracy: 0.7440
Epoch 7/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4585 - accuracy: 0.7584 - val_loss: 0.4644 - val_accuracy: 0.7542
Epoch 8/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4470 - accuracy: 0.7700 - val_loss: 0.4544 - val_accuracy: 0.7682
Epoch 9/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4374 - accuracy: 0.7804 - val_loss: 0.4462 - val_accuracy: 0.7789
Epoch 10/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4297 - accuracy: 0.7848 - val_loss: 0.4395 - val_accuracy: 0.7865
Epoch 11/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4232 - accuracy: 0.7904 - val_loss: 0.4339 - val_accuracy: 0.7933
Epoch 12/20
40/40 [==============================] - 0s 10ms/step - loss: 0.4176 - accuracy: 0.7952 - val_loss: 0.4289 - val_accuracy: 0.7963
Epoch 13/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4126 - accuracy: 0.7992 - val_loss: 0.4243 - val_accuracy: 0.8010
Epoch 14/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4078 - accuracy: 0.8052 - val_loss: 0.4199 - val_accuracy: 0.8033
Epoch 15/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4029 - accuracy: 0.8096 - val_loss: 0.4155 - val_accuracy: 0.8067
Epoch 16/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3981 - accuracy: 0.8132 - val_loss: 0.4109 - val_accuracy: 0.8099
Epoch 17/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3932 - accuracy: 0.8152 - val_loss: 0.4061 - val_accuracy: 0.8129
Epoch 18/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3883 - accuracy: 0.8208 - val_loss: 0.4012 - val_accuracy: 0.8149
Epoch 19/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3832 - accuracy: 0.8232 - val_loss: 0.3963 - val_accuracy: 0.8168
Epoch 20/20
40/40 [==============================] - 0s 10ms/step - loss: 0.3783 - accuracy: 0.8276 - val_loss: 0.3912 - val_accuracy: 0.8203
CPU times: user 12.1 s, sys: 2.14 s, total: 14.2 s
Wall time: 8.54 s
<keras.callbacks.History at 0x7f6b181d7450>

Hãy đánh giá phần tiền xử lý và phần chỉ với hai mạng nơ-ron:

evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
157/157 [==============================] - 0s 2ms/step - loss: 0.3912 - accuracy: 0.8203
Accuracy (NN #1 and #2 only):  0.8202999830245972
Loss (NN #1 and #2 only):  0.39124569296836853

Hãy đào tạo hai thành phần Rừng Quyết định (nối tiếp nhau).

%%time
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))

model_3.fit(train_dataset_with_preprocessing)
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
23/40 [================>.............] - ETA: 0s
[INFO kernel.cc:736] Start Yggdrasil model training
[INFO kernel.cc:737] Collect training examples
[INFO kernel.cc:392] Number of batches: 40
[INFO kernel.cc:393] Number of examples: 2500
[INFO kernel.cc:759] Dataset:
Number of records: 2500
Number of columns: 11

Number of columns by type:
    NUMERICAL: 10 (90.9091%)
    CATEGORICAL: 1 (9.09091%)

Columns:

NUMERICAL: 10 (90.9091%)
    0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418
    1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499
    2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672
    3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102
    4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379
    5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018
    6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337
    7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215
    8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333
    9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194

CATEGORICAL: 1 (9.09091%)
    10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO kernel.cc:762] Configure learner
[INFO kernel.cc:787] Training config:
learner: "RANDOM_FOREST"
features: "data:0\\.0"
features: "data:0\\.1"
features: "data:0\\.2"
features: "data:0\\.3"
features: "data:0\\.4"
features: "data:0\\.5"
features: "data:0\\.6"
features: "data:0\\.7"
features: "data:0\\.8"
features: "data:0\\.9"
label: "__LABEL"
task: CLASSIFICATION
random_seed: 1234
[yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] {
  num_trees: 1000
  decision_tree {
    max_depth: 16
    min_examples: 5
    in_split_min_examples_check: true
    missing_value_policy: GLOBAL_IMPUTATION
    allow_na_conditions: false
    categorical_set_greedy_forward {
      sampling: 0.1
      max_num_items: -1
      min_item_frequency: 1
    }
    growing_strategy_local {
    }
    categorical {
      cart {
      }
    }
    num_candidate_attributes_ratio: -1
    axis_aligned_split {
    }
    internal {
      sorting_strategy: PRESORTED
    }
  }
  winner_take_all_inference: true
  compute_oob_performances: true
  compute_oob_variable_importances: false
  adapt_bootstrap_size_ratio_for_maximum_training_duration: false
}

[INFO kernel.cc:790] Deployment config:
num_threads: 6

[INFO kernel.cc:817] Train model
[INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s).
[INFO random_forest.cc:628] Training of tree  1/1000 (tree index:1) done accuracy:0.781996 logloss:7.85767
[INFO random_forest.cc:628] Training of tree  11/1000 (tree index:8) done accuracy:0.79895 logloss:2.7263
[INFO random_forest.cc:628] Training of tree  21/1000 (tree index:20) done accuracy:0.8012 logloss:1.26831
[INFO random_forest.cc:628] Training of tree  31/1000 (tree index:30) done accuracy:0.8076 logloss:0.898323
[INFO random_forest.cc:628] Training of tree  41/1000 (tree index:37) done accuracy:0.8084 logloss:0.736323
[INFO random_forest.cc:628] Training of tree  51/1000 (tree index:51) done accuracy:0.8072 logloss:0.612984
[INFO random_forest.cc:628] Training of tree  61/1000 (tree index:63) done accuracy:0.8104 logloss:0.55782
[INFO random_forest.cc:628] Training of tree  71/1000 (tree index:69) done accuracy:0.81 logloss:0.544938
[INFO random_forest.cc:628] Training of tree  81/1000 (tree index:80) done accuracy:0.814 logloss:0.532167
[INFO random_forest.cc:628] Training of tree  91/1000 (tree index:89) done accuracy:0.8144 logloss:0.530892
[INFO random_forest.cc:628] Training of tree  101/1000 (tree index:100) done accuracy:0.814 logloss:0.516588
[INFO random_forest.cc:628] Training of tree  111/1000 (tree index:108) done accuracy:0.8128 logloss:0.490739
[INFO random_forest.cc:628] Training of tree  121/1000 (tree index:118) done accuracy:0.8124 logloss:0.490544
[INFO random_forest.cc:628] Training of tree  131/1000 (tree index:134) done accuracy:0.8112 logloss:0.451653
[INFO random_forest.cc:628] Training of tree  141/1000 (tree index:140) done accuracy:0.8136 logloss:0.437757
[INFO random_forest.cc:628] Training of tree  151/1000 (tree index:150) done accuracy:0.8144 logloss:0.424328
[INFO random_forest.cc:628] Training of tree  161/1000 (tree index:159) done accuracy:0.8132 logloss:0.42426
[INFO random_forest.cc:628] Training of tree  171/1000 (tree index:168) done accuracy:0.814 logloss:0.411061
[INFO random_forest.cc:628] Training of tree  181/1000 (tree index:184) done accuracy:0.8136 logloss:0.411324
[INFO random_forest.cc:628] Training of tree  191/1000 (tree index:190) done accuracy:0.8148 logloss:0.410002
[INFO random_forest.cc:628] Training of tree  201/1000 (tree index:200) done accuracy:0.8144 logloss:0.409526
[INFO random_forest.cc:628] Training of tree  211/1000 (tree index:208) done accuracy:0.814 logloss:0.40944
[INFO random_forest.cc:628] Training of tree  221/1000 (tree index:218) done accuracy:0.8152 logloss:0.409039
[INFO random_forest.cc:628] Training of tree  231/1000 (tree index:234) done accuracy:0.8144 logloss:0.409254
[INFO random_forest.cc:628] Training of tree  241/1000 (tree index:242) done accuracy:0.8144 logloss:0.40879
[INFO random_forest.cc:628] Training of tree  251/1000 (tree index:251) done accuracy:0.8152 logloss:0.395703
[INFO random_forest.cc:628] Training of tree  261/1000 (tree index:259) done accuracy:0.8168 logloss:0.395747
[INFO random_forest.cc:628] Training of tree  271/1000 (tree index:268) done accuracy:0.814 logloss:0.394959
[INFO random_forest.cc:628] Training of tree  281/1000 (tree index:283) done accuracy:0.8148 logloss:0.395202
[INFO random_forest.cc:628] Training of tree  291/1000 (tree index:292) done accuracy:0.8136 logloss:0.395536
[INFO random_forest.cc:628] Training of tree  301/1000 (tree index:300) done accuracy:0.8128 logloss:0.39472
[INFO random_forest.cc:628] Training of tree  311/1000 (tree index:308) done accuracy:0.8124 logloss:0.394763
[INFO random_forest.cc:628] Training of tree  321/1000 (tree index:318) done accuracy:0.8132 logloss:0.394732
[INFO random_forest.cc:628] Training of tree  331/1000 (tree index:334) done accuracy:0.8136 logloss:0.394822
[INFO random_forest.cc:628] Training of tree  341/1000 (tree index:343) done accuracy:0.812 logloss:0.395051
[INFO random_forest.cc:628] Training of tree  351/1000 (tree index:350) done accuracy:0.8132 logloss:0.39492
[INFO random_forest.cc:628] Training of tree  361/1000 (tree index:358) done accuracy:0.8132 logloss:0.395054
[INFO random_forest.cc:628] Training of tree  371/1000 (tree index:368) done accuracy:0.812 logloss:0.395588
[INFO random_forest.cc:628] Training of tree  381/1000 (tree index:384) done accuracy:0.8104 logloss:0.395576
[INFO random_forest.cc:628] Training of tree  391/1000 (tree index:390) done accuracy:0.8132 logloss:0.395713
[INFO random_forest.cc:628] Training of tree  401/1000 (tree index:400) done accuracy:0.8088 logloss:0.383693
[INFO random_forest.cc:628] Training of tree  411/1000 (tree index:408) done accuracy:0.8088 logloss:0.383575
[INFO random_forest.cc:628] Training of tree  421/1000 (tree index:417) done accuracy:0.8096 logloss:0.383934
[INFO random_forest.cc:628] Training of tree  431/1000 (tree index:434) done accuracy:0.81 logloss:0.384001
[INFO random_forest.cc:628] Training of tree  441/1000 (tree index:442) done accuracy:0.808 logloss:0.384118
[INFO random_forest.cc:628] Training of tree  451/1000 (tree index:450) done accuracy:0.8096 logloss:0.384076
[INFO random_forest.cc:628] Training of tree  461/1000 (tree index:458) done accuracy:0.8104 logloss:0.383208
[INFO random_forest.cc:628] Training of tree  471/1000 (tree index:468) done accuracy:0.812 logloss:0.383298
[INFO random_forest.cc:628] Training of tree  481/1000 (tree index:482) done accuracy:0.81 logloss:0.38358
[INFO random_forest.cc:628] Training of tree  491/1000 (tree index:492) done accuracy:0.812 logloss:0.383453
[INFO random_forest.cc:628] Training of tree  501/1000 (tree index:500) done accuracy:0.8128 logloss:0.38317
[INFO random_forest.cc:628] Training of tree  511/1000 (tree index:508) done accuracy:0.812 logloss:0.383369
[INFO random_forest.cc:628] Training of tree  521/1000 (tree index:518) done accuracy:0.8132 logloss:0.383461
[INFO random_forest.cc:628] Training of tree  531/1000 (tree index:532) done accuracy:0.8124 logloss:0.38342
[INFO random_forest.cc:628] Training of tree  541/1000 (tree index:542) done accuracy:0.8128 logloss:0.383376
[INFO random_forest.cc:628] Training of tree  551/1000 (tree index:550) done accuracy:0.8128 logloss:0.383663
[INFO random_forest.cc:628] Training of tree  561/1000 (tree index:558) done accuracy:0.812 logloss:0.383574
[INFO random_forest.cc:628] Training of tree  571/1000 (tree index:568) done accuracy:0.8116 logloss:0.383529
[INFO random_forest.cc:628] Training of tree  581/1000 (tree index:580) done accuracy:0.8128 logloss:0.383624
[INFO random_forest.cc:628] Training of tree  591/1000 (tree index:592) done accuracy:0.814 logloss:0.383599
[INFO random_forest.cc:628] Training of tree  601/1000 (tree index:601) done accuracy:0.8148 logloss:0.383524
[INFO random_forest.cc:628] Training of tree  611/1000 (tree index:608) done accuracy:0.8156 logloss:0.383555
[INFO random_forest.cc:628] Training of tree  621/1000 (tree index:619) done accuracy:0.8132 logloss:0.382847
[INFO random_forest.cc:628] Training of tree  631/1000 (tree index:632) done accuracy:0.8124 logloss:0.382872
[INFO random_forest.cc:628] Training of tree  641/1000 (tree index:641) done accuracy:0.8144 logloss:0.382728
[INFO random_forest.cc:628] Training of tree  651/1000 (tree index:648) done accuracy:0.8132 logloss:0.382554
[INFO random_forest.cc:628] Training of tree  661/1000 (tree index:658) done accuracy:0.8128 logloss:0.382705
[INFO random_forest.cc:628] Training of tree  671/1000 (tree index:670) done accuracy:0.8136 logloss:0.38288
[INFO random_forest.cc:628] Training of tree  681/1000 (tree index:682) done accuracy:0.8152 logloss:0.383007
[INFO random_forest.cc:628] Training of tree  691/1000 (tree index:690) done accuracy:0.8144 logloss:0.382971
[INFO random_forest.cc:628] Training of tree  701/1000 (tree index:698) done accuracy:0.8152 logloss:0.382869
[INFO random_forest.cc:628] Training of tree  711/1000 (tree index:708) done accuracy:0.8152 logloss:0.382792
[INFO random_forest.cc:628] Training of tree  721/1000 (tree index:722) done accuracy:0.8136 logloss:0.38274
[INFO random_forest.cc:628] Training of tree  731/1000 (tree index:732) done accuracy:0.8144 logloss:0.38268
[INFO random_forest.cc:628] Training of tree  741/1000 (tree index:740) done accuracy:0.814 logloss:0.382835
[INFO random_forest.cc:628] Training of tree  751/1000 (tree index:751) done accuracy:0.8152 logloss:0.38297
[INFO random_forest.cc:628] Training of tree  761/1000 (tree index:758) done accuracy:0.8152 logloss:0.382917
[INFO random_forest.cc:628] Training of tree  771/1000 (tree index:770) done accuracy:0.8156 logloss:0.370596
[INFO random_forest.cc:628] Training of tree  781/1000 (tree index:782) done accuracy:0.816 logloss:0.370687
[INFO random_forest.cc:628] Training of tree  791/1000 (tree index:789) done accuracy:0.8164 logloss:0.37068
[INFO random_forest.cc:628] Training of tree  801/1000 (tree index:798) done accuracy:0.8172 logloss:0.370535
[INFO random_forest.cc:628] Training of tree  811/1000 (tree index:809) done accuracy:0.816 logloss:0.370674
[INFO random_forest.cc:628] Training of tree  821/1000 (tree index:821) done accuracy:0.816 logloss:0.370929
[INFO random_forest.cc:628] Training of tree  831/1000 (tree index:829) done accuracy:0.8148 logloss:0.370904
[INFO random_forest.cc:628] Training of tree  841/1000 (tree index:841) done accuracy:0.8164 logloss:0.371016
[INFO random_forest.cc:628] Training of tree  851/1000 (tree index:849) done accuracy:0.8168 logloss:0.370914
[INFO random_forest.cc:628] Training of tree  861/1000 (tree index:860) done accuracy:0.8164 logloss:0.371043
[INFO random_forest.cc:628] Training of tree  871/1000 (tree index:871) done accuracy:0.8168 logloss:0.371094
[INFO random_forest.cc:628] Training of tree  881/1000 (tree index:878) done accuracy:0.8152 logloss:0.371054
[INFO random_forest.cc:628] Training of tree  891/1000 (tree index:888) done accuracy:0.8156 logloss:0.370908
[INFO random_forest.cc:628] Training of tree  901/1000 (tree index:900) done accuracy:0.8156 logloss:0.370831
[INFO random_forest.cc:628] Training of tree  911/1000 (tree index:910) done accuracy:0.8152 logloss:0.370775
[INFO random_forest.cc:628] Training of tree  921/1000 (tree index:922) done accuracy:0.814 logloss:0.370804
[INFO random_forest.cc:628] Training of tree  931/1000 (tree index:929) done accuracy:0.8148 logloss:0.370495
[INFO random_forest.cc:628] Training of tree  941/1000 (tree index:941) done accuracy:0.816 logloss:0.370443
[INFO random_forest.cc:628] Training of tree  951/1000 (tree index:948) done accuracy:0.8156 logloss:0.370486
[INFO random_forest.cc:628] Training of tree  961/1000 (tree index:960) done accuracy:0.8152 logloss:0.370519
[INFO random_forest.cc:628] Training of tree  971/1000 (tree index:971) done accuracy:0.8144 logloss:0.370543
[INFO random_forest.cc:628] Training of tree  981/1000 (tree index:983) done accuracy:0.8144 logloss:0.370629
[INFO random_forest.cc:628] Training of tree  991/1000 (tree index:991) done accuracy:0.814 logloss:0.370625
[INFO random_forest.cc:628] Training of tree  1000/1000 (tree index:998) done accuracy:0.8144 logloss:0.370667
[INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8144 logloss:0.370667
[INFO kernel.cc:828] Export model in log directory: /tmp/tmp9izglk4r
[INFO kernel.cc:836] Save model in resources
[INFO kernel.cc:988] Loading model from path
40/40 [==============================] - 6s 66ms/step
[INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324508 node(s), and 10 input feature(s).
[INFO abstract_model.cc:993] Engine "RandomForestOptPred" built
[INFO kernel.cc:848] Use fast generic engine
24/40 [=================>............] - ETA: 0s
[INFO kernel.cc:736] Start Yggdrasil model training
[INFO kernel.cc:737] Collect training examples
[INFO kernel.cc:392] Number of batches: 40
[INFO kernel.cc:393] Number of examples: 2500
[INFO kernel.cc:759] Dataset:
Number of records: 2500
Number of columns: 11

Number of columns by type:
    NUMERICAL: 10 (90.9091%)
    CATEGORICAL: 1 (9.09091%)

Columns:

NUMERICAL: 10 (90.9091%)
    0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418
    1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499
    2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672
    3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102
    4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379
    5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018
    6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337
    7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215
    8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333
    9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194

CATEGORICAL: 1 (9.09091%)
    10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO kernel.cc:762] Configure learner
[INFO kernel.cc:787] Training config:
learner: "RANDOM_FOREST"
features: "data:0\\.0"
features: "data:0\\.1"
features: "data:0\\.2"
features: "data:0\\.3"
features: "data:0\\.4"
features: "data:0\\.5"
features: "data:0\\.6"
features: "data:0\\.7"
features: "data:0\\.8"
features: "data:0\\.9"
label: "__LABEL"
task: CLASSIFICATION
random_seed: 4567
[yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] {
  num_trees: 1000
  decision_tree {
    max_depth: 16
    min_examples: 5
    in_split_min_examples_check: true
    missing_value_policy: GLOBAL_IMPUTATION
    allow_na_conditions: false
    categorical_set_greedy_forward {
      sampling: 0.1
      max_num_items: -1
      min_item_frequency: 1
    }
    growing_strategy_local {
    }
    categorical {
      cart {
      }
    }
    num_candidate_attributes_ratio: -1
    axis_aligned_split {
    }
    internal {
      sorting_strategy: PRESORTED
    }
  }
  winner_take_all_inference: true
  compute_oob_performances: true
  compute_oob_variable_importances: false
  adapt_bootstrap_size_ratio_for_maximum_training_duration: false
}

[INFO kernel.cc:790] Deployment config:
num_threads: 6

[INFO kernel.cc:817] Train model
[INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s).
[INFO random_forest.cc:628] Training of tree  1/1000 (tree index:1) done accuracy:0.783262 logloss:7.81204
[INFO random_forest.cc:628] Training of tree  11/1000 (tree index:9) done accuracy:0.801127 logloss:2.73187
[INFO random_forest.cc:628] Training of tree  21/1000 (tree index:19) done accuracy:0.811449 logloss:1.1286
[INFO random_forest.cc:628] Training of tree  31/1000 (tree index:32) done accuracy:0.8132 logloss:0.910787
[INFO random_forest.cc:628] Training of tree  41/1000 (tree index:42) done accuracy:0.812 logloss:0.745694
[INFO random_forest.cc:628] Training of tree  51/1000 (tree index:48) done accuracy:0.8144 logloss:0.690226
[INFO random_forest.cc:628] Training of tree  61/1000 (tree index:59) done accuracy:0.8136 logloss:0.659137
[INFO random_forest.cc:628] Training of tree  71/1000 (tree index:72) done accuracy:0.8176 logloss:0.577357
[INFO random_forest.cc:628] Training of tree  81/1000 (tree index:79) done accuracy:0.814 logloss:0.565115
[INFO random_forest.cc:628] Training of tree  91/1000 (tree index:91) done accuracy:0.8156 logloss:0.56459
[INFO random_forest.cc:628] Training of tree  101/1000 (tree index:99) done accuracy:0.8148 logloss:0.564104
[INFO random_forest.cc:628] Training of tree  111/1000 (tree index:109) done accuracy:0.8172 logloss:0.537417
[INFO random_forest.cc:628] Training of tree  121/1000 (tree index:120) done accuracy:0.8156 logloss:0.524543
[INFO random_forest.cc:628] Training of tree  131/1000 (tree index:132) done accuracy:0.8152 logloss:0.511111
[INFO random_forest.cc:628] Training of tree  141/1000 (tree index:141) done accuracy:0.816 logloss:0.498209
[INFO random_forest.cc:628] Training of tree  151/1000 (tree index:150) done accuracy:0.8192 logloss:0.485477
[INFO random_forest.cc:628] Training of tree  161/1000 (tree index:160) done accuracy:0.8196 logloss:0.472341
[INFO random_forest.cc:628] Training of tree  171/1000 (tree index:171) done accuracy:0.818 logloss:0.459903
[INFO random_forest.cc:628] Training of tree  181/1000 (tree index:182) done accuracy:0.8172 logloss:0.459812
[INFO random_forest.cc:628] Training of tree  191/1000 (tree index:190) done accuracy:0.8192 logloss:0.459588
[INFO random_forest.cc:628] Training of tree  201/1000 (tree index:199) done accuracy:0.818 logloss:0.459855
[INFO random_forest.cc:628] Training of tree  211/1000 (tree index:209) done accuracy:0.8176 logloss:0.459088
[INFO random_forest.cc:628] Training of tree  221/1000 (tree index:221) done accuracy:0.8168 logloss:0.43377
[INFO random_forest.cc:628] Training of tree  231/1000 (tree index:233) done accuracy:0.8196 logloss:0.433567
[INFO random_forest.cc:628] Training of tree  241/1000 (tree index:241) done accuracy:0.8208 logloss:0.434371
[INFO random_forest.cc:628] Training of tree  251/1000 (tree index:250) done accuracy:0.8192 logloss:0.434301
[INFO random_forest.cc:628] Training of tree  261/1000 (tree index:260) done accuracy:0.8172 logloss:0.43402
[INFO random_forest.cc:628] Training of tree  271/1000 (tree index:271) done accuracy:0.818 logloss:0.433583
[INFO random_forest.cc:628] Training of tree  281/1000 (tree index:283) done accuracy:0.8184 logloss:0.420657
[INFO random_forest.cc:628] Training of tree  291/1000 (tree index:291) done accuracy:0.8168 logloss:0.420481
[INFO random_forest.cc:628] Training of tree  301/1000 (tree index:299) done accuracy:0.82 logloss:0.419901
[INFO random_forest.cc:628] Training of tree  311/1000 (tree index:312) done accuracy:0.8188 logloss:0.419881
[INFO random_forest.cc:628] Training of tree  321/1000 (tree index:319) done accuracy:0.8172 logloss:0.419582
[INFO random_forest.cc:628] Training of tree  331/1000 (tree index:332) done accuracy:0.8176 logloss:0.419608
[INFO random_forest.cc:628] Training of tree  341/1000 (tree index:341) done accuracy:0.816 logloss:0.419608
[INFO random_forest.cc:628] Training of tree  351/1000 (tree index:352) done accuracy:0.8152 logloss:0.419729
[INFO random_forest.cc:628] Training of tree  361/1000 (tree index:361) done accuracy:0.8152 logloss:0.419264
[INFO random_forest.cc:628] Training of tree  371/1000 (tree index:369) done accuracy:0.8148 logloss:0.418932
[INFO random_forest.cc:628] Training of tree  381/1000 (tree index:379) done accuracy:0.8156 logloss:0.419148
[INFO random_forest.cc:628] Training of tree  391/1000 (tree index:391) done accuracy:0.8164 logloss:0.419344
[INFO random_forest.cc:628] Training of tree  401/1000 (tree index:398) done accuracy:0.8156 logloss:0.419051
[INFO random_forest.cc:628] Training of tree  411/1000 (tree index:408) done accuracy:0.8168 logloss:0.406486
[INFO random_forest.cc:628] Training of tree  421/1000 (tree index:420) done accuracy:0.8168 logloss:0.406477
[INFO random_forest.cc:628] Training of tree  431/1000 (tree index:430) done accuracy:0.816 logloss:0.406362
[INFO random_forest.cc:628] Training of tree  441/1000 (tree index:440) done accuracy:0.8172 logloss:0.406377
[INFO random_forest.cc:628] Training of tree  451/1000 (tree index:448) done accuracy:0.8176 logloss:0.406083
[INFO random_forest.cc:628] Training of tree  461/1000 (tree index:458) done accuracy:0.8172 logloss:0.406205
[INFO random_forest.cc:628] Training of tree  471/1000 (tree index:474) done accuracy:0.8168 logloss:0.406437
[INFO random_forest.cc:628] Training of tree  481/1000 (tree index:482) done accuracy:0.8184 logloss:0.406287
[INFO random_forest.cc:628] Training of tree  491/1000 (tree index:490) done accuracy:0.8172 logloss:0.40588
[INFO random_forest.cc:628] Training of tree  501/1000 (tree index:498) done accuracy:0.816 logloss:0.406036
[INFO random_forest.cc:628] Training of tree  511/1000 (tree index:508) done accuracy:0.8164 logloss:0.406053
[INFO random_forest.cc:628] Training of tree  521/1000 (tree index:524) done accuracy:0.8168 logloss:0.405945
[INFO random_forest.cc:628] Training of tree  531/1000 (tree index:530) done accuracy:0.816 logloss:0.405778
[INFO random_forest.cc:628] Training of tree  541/1000 (tree index:540) done accuracy:0.8156 logloss:0.405737
[INFO random_forest.cc:628] Training of tree  551/1000 (tree index:552) done accuracy:0.8156 logloss:0.406028
[INFO random_forest.cc:628] Training of tree  561/1000 (tree index:559) done accuracy:0.8164 logloss:0.406081
[INFO random_forest.cc:628] Training of tree  571/1000 (tree index:569) done accuracy:0.8152 logloss:0.405734
[INFO random_forest.cc:628] Training of tree  581/1000 (tree index:579) done accuracy:0.8172 logloss:0.393451
[INFO random_forest.cc:628] Training of tree  591/1000 (tree index:591) done accuracy:0.816 logloss:0.393428
[INFO random_forest.cc:628] Training of tree  601/1000 (tree index:603) done accuracy:0.8156 logloss:0.393545
[INFO random_forest.cc:628] Training of tree  611/1000 (tree index:609) done accuracy:0.8156 logloss:0.3934
[INFO random_forest.cc:628] Training of tree  621/1000 (tree index:620) done accuracy:0.8148 logloss:0.393539
[INFO random_forest.cc:628] Training of tree  631/1000 (tree index:629) done accuracy:0.8156 logloss:0.393731
[INFO random_forest.cc:628] Training of tree  641/1000 (tree index:641) done accuracy:0.8164 logloss:0.39383
[INFO random_forest.cc:628] Training of tree  651/1000 (tree index:649) done accuracy:0.8152 logloss:0.393724
[INFO random_forest.cc:628] Training of tree  661/1000 (tree index:659) done accuracy:0.8152 logloss:0.393764
[INFO random_forest.cc:628] Training of tree  671/1000 (tree index:670) done accuracy:0.816 logloss:0.393834
[INFO random_forest.cc:628] Training of tree  681/1000 (tree index:680) done accuracy:0.8156 logloss:0.393894
[INFO random_forest.cc:628] Training of tree  691/1000 (tree index:689) done accuracy:0.8152 logloss:0.393746
[INFO random_forest.cc:628] Training of tree  701/1000 (tree index:698) done accuracy:0.814 logloss:0.393743
[INFO random_forest.cc:628] Training of tree  711/1000 (tree index:708) done accuracy:0.8152 logloss:0.393294
[INFO random_forest.cc:628] Training of tree  721/1000 (tree index:721) done accuracy:0.816 logloss:0.393451
[INFO random_forest.cc:628] Training of tree  731/1000 (tree index:733) done accuracy:0.8164 logloss:0.393486
[INFO random_forest.cc:628] Training of tree  741/1000 (tree index:739) done accuracy:0.8156 logloss:0.393553
[INFO random_forest.cc:628] Training of tree  751/1000 (tree index:751) done accuracy:0.816 logloss:0.393731
[INFO random_forest.cc:628] Training of tree  761/1000 (tree index:758) done accuracy:0.8172 logloss:0.393635
[INFO random_forest.cc:628] Training of tree  771/1000 (tree index:769) done accuracy:0.8164 logloss:0.393584
[INFO random_forest.cc:628] Training of tree  781/1000 (tree index:779) done accuracy:0.8184 logloss:0.393728
[INFO random_forest.cc:628] Training of tree  791/1000 (tree index:789) done accuracy:0.8192 logloss:0.393858
[INFO random_forest.cc:628] Training of tree  801/1000 (tree index:800) done accuracy:0.8184 logloss:0.381756
[INFO random_forest.cc:628] Training of tree  811/1000 (tree index:813) done accuracy:0.82 logloss:0.38174
[INFO random_forest.cc:628] Training of tree  821/1000 (tree index:819) done accuracy:0.8196 logloss:0.381865
[INFO random_forest.cc:628] Training of tree  831/1000 (tree index:829) done accuracy:0.8172 logloss:0.381929
[INFO random_forest.cc:628] Training of tree  841/1000 (tree index:838) done accuracy:0.8164 logloss:0.382007
[INFO random_forest.cc:628] Training of tree  851/1000 (tree index:850) done accuracy:0.8172 logloss:0.382099
[INFO random_forest.cc:628] Training of tree  861/1000 (tree index:863) done accuracy:0.8172 logloss:0.381937
[INFO random_forest.cc:628] Training of tree  871/1000 (tree index:869) done accuracy:0.8168 logloss:0.382131
[INFO random_forest.cc:628] Training of tree  881/1000 (tree index:879) done accuracy:0.8188 logloss:0.381963
[INFO random_forest.cc:628] Training of tree  891/1000 (tree index:889) done accuracy:0.8192 logloss:0.382052
[INFO random_forest.cc:628] Training of tree  901/1000 (tree index:901) done accuracy:0.8184 logloss:0.382174
[INFO random_forest.cc:628] Training of tree  911/1000 (tree index:913) done accuracy:0.8192 logloss:0.382273
[INFO random_forest.cc:628] Training of tree  921/1000 (tree index:919) done accuracy:0.82 logloss:0.382407
[INFO random_forest.cc:628] Training of tree  931/1000 (tree index:929) done accuracy:0.8216 logloss:0.382277
[INFO random_forest.cc:628] Training of tree  941/1000 (tree index:939) done accuracy:0.8204 logloss:0.382434
[INFO random_forest.cc:628] Training of tree  951/1000 (tree index:951) done accuracy:0.8192 logloss:0.382444
[INFO random_forest.cc:628] Training of tree  961/1000 (tree index:959) done accuracy:0.8192 logloss:0.382497
[INFO random_forest.cc:628] Training of tree  971/1000 (tree index:969) done accuracy:0.8188 logloss:0.382592
[INFO random_forest.cc:628] Training of tree  981/1000 (tree index:979) done accuracy:0.8192 logloss:0.382657
[INFO random_forest.cc:628] Training of tree  991/1000 (tree index:989) done accuracy:0.8188 logloss:0.382671
[INFO random_forest.cc:628] Training of tree  1000/1000 (tree index:997) done accuracy:0.8192 logloss:0.38269
[INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8192 logloss:0.38269
[INFO kernel.cc:828] Export model in log directory: /tmp/tmp0r9hhl7d
[INFO kernel.cc:836] Save model in resources
[INFO kernel.cc:988] Loading model from path
40/40 [==============================] - 3s 64ms/step
[INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324942 node(s), and 10 input feature(s).
[INFO kernel.cc:848] Use fast generic engine
CPU times: user 21.5 s, sys: 755 ms, total: 22.2 s
Wall time: 10.5 s
<keras.callbacks.History at 0x7f6b7874c4d0>

Và hãy đánh giá từng Khu rừng Quyết định.

model_3.compile(["accuracy"])
model_4.compile(["accuracy"])

evaluation_df3_only = model_3.evaluate(
    test_dataset_with_preprocessing, return_dict=True)
evaluation_df4_only = model_4.evaluate(
    test_dataset_with_preprocessing, return_dict=True)

print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
157/157 [==============================] - 2s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8218
157/157 [==============================] - 1s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8223
Accuracy (DF #3 only):  0.8217999935150146
Accuracy (DF #4 only):  0.8223000168800354

Hãy đánh giá toàn bộ thành phần mô hình:

ensemble_nn_and_df.compile(
    loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])

evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
    test_dataset, return_dict=True)

print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
157/157 [==============================] - 2s 8ms/step - loss: 0.3707 - accuracy: 0.8236
Accuracy (2xNN and 2xDF):  0.8235999941825867
Loss (2xNN and 2xDF):  0.3706760108470917

Để kết thúc, chúng ta hãy tinh chỉnh lớp mạng thần kinh thêm một chút. Lưu ý rằng chúng tôi không tinh chỉnh quá trình nhúng được đào tạo trước vì các mô hình DF phụ thuộc vào nó (trừ khi chúng tôi cũng sẽ đào tạo lại chúng sau đó).

Tóm lại, bạn có:

Accuracy (NN #1 and #2 only): 0.820300
Accuracy (DF #3 only):        0.821800
Accuracy (DF #4 only):        0.822300
----------------------------------------
Accuracy (2xNN and 2xDF): 0.823600
                  +0.003300 over NN #1 and #2 only
                  +0.001800 over DF #3 only
                  +0.001300 over DF #4 only

Ở đây, bạn có thể thấy rằng mô hình sáng tác hoạt động tốt hơn các phần riêng lẻ của nó. Đây là lý do tại sao quần thể hoạt động rất tốt.

Cái gì tiếp theo?

Trong ví dụ này, bạn đã thấy cách kết hợp rừng quyết định với mạng thần kinh. Một bước bổ sung sẽ là đào tạo thêm mạng nơ-ron và các khu rừng quyết định với nhau.

Ngoài ra, vì mục đích rõ ràng, các khu rừng quyết định chỉ nhận được đầu vào đã được xử lý trước. Tuy nhiên, rừng quyết định nói chung là tuyệt vời đang tiêu tốn dữ liệu thô. Mô hình sẽ được cải thiện bằng cách cung cấp các đặc điểm thô cho các mô hình rừng quyết định.

Trong ví dụ này, mô hình cuối cùng là giá trị trung bình của các dự đoán của các mô hình riêng lẻ. Giải pháp này hoạt động tốt nếu tất cả các mô hình hoạt động ít hơn với cùng một. Tuy nhiên, nếu một trong các mô hình con rất tốt, việc gộp chung nó với các mô hình khác thực sự có thể gây bất lợi (hoặc ngược lại; ví dụ, hãy thử giảm số lượng ví dụ từ 1k và xem nó ảnh hưởng nhiều đến mạng nơ-ron như thế nào; hoặc cho phép SPARSE_OBLIQUE chia rẽ trong mô hình rừng ngẫu nhiên thứ hai).