Потоковая передача структурированных данных из Elasticsearch с использованием Tensorflow-IO

Посмотреть на TensorFlow.org Запустить в Google Colab Посмотреть исходный код на GitHub Скачать блокнот

Обзор

Этот учебник посвящен потоковые данные из Elasticsearch кластера в tf.data.Dataset , которая затем используется в сочетании с tf.keras для подготовки и вывода.

Elasticseach — это прежде всего распределенная поисковая система, которая поддерживает хранение структурированных, неструктурированных, геопространственных, числовых данных и т. д. В целях этого руководства используется набор данных со структурированными записями.

Установочные пакеты

elasticsearch пакет используется для приготовления и хранения данных в пределах индексов elasticsearch только для демонстрационных целей. В реальных производственных кластерах с многочисленными узлами кластер может получать данные от соединителей, таких как logstash и т. д.

После того как данные доступны в elasticsearch кластере, только tensorflow-io требуются для потоковой передачи данных в модель.

Установите необходимые пакеты tensorflow-io и elasticsearch.

pip install tensorflow-io
pip install elasticsearch

Импорт пакетов

import os
import time
from sklearn.model_selection import train_test_split
from elasticsearch import Elasticsearch
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio

Проверка импорта tf и tfio

print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.16.0
tensorflow version: 2.3.0

Загрузите и настройте экземпляр Elasticsearch

В демонстрационных целях используется версия пакета elasticsearch с открытым исходным кодом.


wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
wget -q https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
tar -xzf elasticsearch-oss-7.9.2-linux-x86_64.tar.gz
sudo chown -R daemon:daemon elasticsearch-7.9.2/
shasum -a 512 -c elasticsearch-oss-7.9.2-linux-x86_64.tar.gz.sha512
elasticsearch-oss-7.9.2-linux-x86_64.tar.gz: OK

Запустить экземпляр как процесс-демон


sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
Starting job # 0 in a separate thread.
# Sleep for few seconds to let the instance start.
time.sleep(20)

После запуска экземпляр имеет, Grep для elasticsearch в процессах список , чтобы подтвердить наличие.


ps -ef | grep elasticsearch
root         144     142  0 21:24 ?        00:00:00 sudo -H -u daemon elasticsearch-7.9.2/bin/elasticsearch
daemon       145     144 86 21:24 ?        00:00:17 /content/elasticsearch-7.9.2/jdk/bin/java -Xshare:auto -Des.networkaddress.cache.ttl=60 -Des.networkaddress.cache.negative.ttl=10 -XX:+AlwaysPreTouch -Xss1m -Djava.awt.headless=true -Dfile.encoding=UTF-8 -Djna.nosys=true -XX:-OmitStackTraceInFastThrow -XX:+ShowCodeDetailsInExceptionMessages -Dio.netty.noUnsafe=true -Dio.netty.noKeySetOptimization=true -Dio.netty.recycler.maxCapacityPerThread=0 -Dio.netty.allocator.numDirectArenas=0 -Dlog4j.shutdownHookEnabled=false -Dlog4j2.disable.jmx=true -Djava.locale.providers=SPI,COMPAT -Xms1g -Xmx1g -XX:+UseG1GC -XX:G1ReservePercent=25 -XX:InitiatingHeapOccupancyPercent=30 -Djava.io.tmpdir=/tmp/elasticsearch-16913031424109346409 -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=data -XX:ErrorFile=logs/hs_err_pid%p.log -Xlog:gc*,gc+age=trace,safepoint:file=logs/gc.log:utctime,pid,tags:filecount=32,filesize=64m -XX:MaxDirectMemorySize=536870912 -Des.path.home=/content/elasticsearch-7.9.2 -Des.path.conf=/content/elasticsearch-7.9.2/config -Des.distribution.flavor=oss -Des.distribution.type=tar -Des.bundled_jdk=true -cp /content/elasticsearch-7.9.2/lib/* org.elasticsearch.bootstrap.Elasticsearch
root         382     380  0 21:24 ?        00:00:00 grep elasticsearch

запросите базовую конечную точку, чтобы получить информацию о кластере.


curl -sX GET "localhost:9200/"
{
  "name" : "d1bc7d054c69",
  "cluster_name" : "elasticsearch",
  "cluster_uuid" : "P8YXfKqYS-OS3k9CdMmlsw",
  "version" : {
    "number" : "7.9.2",
    "build_flavor" : "oss",
    "build_type" : "tar",
    "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e",
    "build_date" : "2020-09-23T00:45:33.626720Z",
    "build_snapshot" : false,
    "lucene_version" : "8.6.2",
    "minimum_wire_compatibility_version" : "6.8.0",
    "minimum_index_compatibility_version" : "6.0.0-beta1"
  },
  "tagline" : "You Know, for Search"
}

Исследуйте набор данных

Для целей данного руководства, позволяет загрузить Petfinder набора данных и подачи данных в elasticsearch вручную. Цель этой задачи классификации - предсказать, будет ли домашнее животное усыновлено или нет.

dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
                        extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip
1671168/1668792 [==============================] - 0s 0us/step
pf_df.head()

Для целей руководства в столбец меток вносятся изменения. 0 будет означать, что питомец не был усыновлен, а 1 — что да.

# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)

# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)

Разделить набор данных

train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples:  8075
Number of testing sample:  3462

Храните данные поезда и теста в индексах elasticsearch.

Хранение данных в локальном кластере elasticsearch имитирует среду для непрерывного удаленного извлечения данных в целях обучения и получения выводов.

ES_NODES = "http://localhost:9200"

def prepare_es_data(index, doc_type, df):
  records = df.to_dict(orient="records")
  es_data = []
  for idx, record in enumerate(records):
    meta_dict = {
          "index": {
              "_index": index, 
              "_type": doc_type, 
              "_id": idx
          }
      }
    es_data.append(meta_dict)
    es_data.append(record)

  return es_data

def index_es_data(index, es_data):
  es_client = Elasticsearch(hosts = [ES_NODES])
  if es_client.indices.exists(index):
      print("deleting the '{}' index.".format(index))
      res = es_client.indices.delete(index=index)
      print("Response from server: {}".format(res))

  print("creating the '{}' index.".format(index))
  res = es_client.indices.create(index=index)
  print("Response from server: {}".format(res))

  print("bulk index the data")
  res = es_client.bulk(index=index, body=es_data, refresh = True)
  print("Errors: {}, Num of records indexed: {}".format(res["errors"], len(res["items"])))
train_es_data = prepare_es_data(index="train", doc_type="pet", df=train_df)
test_es_data = prepare_es_data(index="test", doc_type="pet", df=test_df)

index_es_data(index="train", es_data=train_es_data)
time.sleep(3)
index_es_data(index="test", es_data=test_es_data)
creating the 'train' index.
Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'train'}
bulk index the data
/usr/local/lib/python3.6/dist-packages/elasticsearch/connection/base.py:190: ElasticsearchDeprecationWarning: [types removal] Specifying types in bulk requests is deprecated.
  warnings.warn(message, category=ElasticsearchDeprecationWarning)
Errors: False, Num of records indexed: 8075
creating the 'test' index.
Response from server: {'acknowledged': True, 'shards_acknowledged': True, 'index': 'test'}
bulk index the data
Errors: False, Num of records indexed: 3462

Подготовить наборы данных tfio

После того , как данные доступны в кластере, только tensorflow-io требуются для потоковой передачи данных от индексов. elasticsearch.ElasticsearchIODataset класс используется для этой цели. Класс наследуется от tf.data.Dataset и , таким образом , предоставляет все полезные функциональные возможности tf.data.Dataset из коробки.

Набор данных для обучения

BATCH_SIZE=32
HEADERS = {"Content-Type": "application/json"}

train_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
        nodes=[ES_NODES],
        index="train",
        doc_type="pet",
        headers=HEADERS
    )

# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

Набор данных тестирования

test_ds = tfio.experimental.elasticsearch.ElasticsearchIODataset(
        nodes=[ES_NODES],
        index="test",
        doc_type="pet",
        headers=HEADERS
    )

# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)
Connection successful: http://localhost:9200/_cluster/health

Определите слои предварительной обработки keras

Согласно структурированным обучающим данным , рекомендуются использовать слои Keras Preprocessing , поскольку они более интуитивные, и может быть легко интегрировано с моделями. Однако стандартные feature_columns также могут быть использованы.

Для лучшего понимания preprocessing_layers в классификации структурированных данных, пожалуйста , обратитесь к структурированной обучающей информации

def get_normalization_layer(name, dataset):
  # Create a Normalization layer for our feature.
  normalizer = preprocessing.Normalization()

  # Prepare a Dataset that only yields our feature.
  feature_ds = dataset.map(lambda x, y: x[name])

  # Learn the statistics of the data.
  normalizer.adapt(feature_ds)

  return normalizer

def get_category_encoding_layer(name, dataset, dtype, max_tokens=None):
  # Create a StringLookup layer which will turn strings into integer indices
  if dtype == 'string':
    index = preprocessing.StringLookup(max_tokens=max_tokens)
  else:
    index = preprocessing.IntegerLookup(max_values=max_tokens)

  # Prepare a Dataset that only yields our feature
  feature_ds = dataset.map(lambda x, y: x[name])

  # Learn the set of possible values and assign them a fixed integer index.
  index.adapt(feature_ds)

  # Create a Discretization for our integer indices.
  encoder = preprocessing.CategoryEncoding(max_tokens=index.vocab_size())

  # Prepare a Dataset that only yields our feature.
  feature_ds = feature_ds.map(index)

  # Learn the space of possible indices.
  encoder.adapt(feature_ds)

  # Apply one-hot encoding to our indices. The lambda function captures the
  # layer so you can use them, or include them in the functional model later.
  return lambda feature: encoder(index(feature))

Извлеките партию и изучите особенности записи образца. Это поможет в определении keras Preprocessing слоев для подготовки tf.keras модели.

ds_iter = iter(train_ds)
features, label = next(ds_iter)
{key: value.numpy()[0] for key,value in features.items()}
{'Age': 2,
 'Breed1': b'Tabby',
 'Color1': b'Black',
 'Color2': b'Cream',
 'Fee': 0,
 'FurLength': b'Short',
 'Gender': b'Male',
 'Health': b'Healthy',
 'MaturitySize': b'Small',
 'PhotoAmt': 4,
 'Sterilized': b'No',
 'Type': b'Cat',
 'Vaccinated': b'No'}

Выберите подмножество функций.

all_inputs = []
encoded_features = []

# Numeric features.
for header in ['PhotoAmt', 'Fee']:
  numeric_col = tf.keras.Input(shape=(1,), name=header)
  normalization_layer = get_normalization_layer(header, train_ds)
  encoded_numeric_col = normalization_layer(numeric_col)
  all_inputs.append(numeric_col)
  encoded_features.append(encoded_numeric_col)

# Categorical features encoded as string.
categorical_cols = ['Type', 'Color1', 'Color2', 'Gender', 'MaturitySize',
                    'FurLength', 'Vaccinated', 'Sterilized', 'Health', 'Breed1']
for header in categorical_cols:
  categorical_col = tf.keras.Input(shape=(1,), name=header, dtype='string')
  encoding_layer = get_category_encoding_layer(header, train_ds, dtype='string',
                                               max_tokens=5)
  encoded_categorical_col = encoding_layer(categorical_col)
  all_inputs.append(categorical_col)
  encoded_features.append(encoded_categorical_col)

Постройте, скомпилируйте и обучите модель

# Set the parameters

OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)

# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)

tf.keras.utils.plot_model(model, rankdir='LR', show_shapes=True)

png

# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.
  [n for n in tensors.keys() if n not in ref_input_names])
253/253 [==============================] - 4s 14ms/step - loss: 0.6169 - accuracy: 0.6042
Epoch 2/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5634 - accuracy: 0.6937
Epoch 3/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5573 - accuracy: 0.6981
Epoch 4/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5528 - accuracy: 0.7087
Epoch 5/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5512 - accuracy: 0.7173
Epoch 6/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5456 - accuracy: 0.7219
Epoch 7/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5397 - accuracy: 0.7283
Epoch 8/10
253/253 [==============================] - 4s 14ms/step - loss: 0.5385 - accuracy: 0.7331
Epoch 9/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5355 - accuracy: 0.7326
Epoch 10/10
253/253 [==============================] - 4s 15ms/step - loss: 0.5412 - accuracy: 0.7321
<tensorflow.python.keras.callbacks.History at 0x7f5c235112e8>

Сделайте вывод по тестовым данным

res = model.evaluate(test_ds)
print("test loss, test acc:", res)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/functional.py:543: UserWarning: Input dict contained keys ['Age'] which did not match any model input. They will be ignored by the model.
  [n for n in tensors.keys() if n not in ref_input_names])
109/109 [==============================] - 2s 15ms/step - loss: 0.5344 - accuracy: 0.7421
test loss, test acc: [0.534355640411377, 0.7420566082000732]

Использованная литература: