MongoDB 컬렉션의 Tensorflow 데이터 세트

TensorFlow.org에서 보기 Google Colab에서 실행 GitHub에서 소스 보기 노트북 다운로드

개요

이 튜토리얼은 준비에 초점을 맞추고 tf.data.Dataset MongoDB의 컬렉션에서 데이터를 읽고 훈련을 위해 그것을 사용하여의를 tf.keras 모델을.

설치 패키지

이 튜토리얼 용도는 pymongo 데이터를 저장하기 위해 새로운 MongoDB를 데이터베이스와 컬렉션을 만들 수있는 도우미 패키지로.

필요한 tensorflow-io 및 mongodb(도우미) 패키지 설치

pip install -q tensorflow-io
pip install -q pymongo

패키지 가져오기

import os
import time
from pprint import pprint
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
import tensorflow_io as tfio
from pymongo import MongoClient

tf 및 tfio 가져오기 확인

print("tensorflow-io version: {}".format(tfio.__version__))
print("tensorflow version: {}".format(tf.__version__))
tensorflow-io version: 0.20.0
tensorflow version: 2.6.0

MongoDB 인스턴스 다운로드 및 설정

데모 목적으로 mongodb의 오픈 소스 버전이 사용됩니다.


sudo apt install -y mongodb >log
service mongodb start

* Starting database mongodb
   ...done.
WARNING: apt does not have a stable CLI interface. Use with caution in scripts.

debconf: unable to initialize frontend: Dialog
debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 8.)
debconf: falling back to frontend: Readline
debconf: unable to initialize frontend: Readline
debconf: (This frontend requires a controlling tty.)
debconf: falling back to frontend: Teletype
dpkg-preconfigure: unable to re-open stdin:
# Sleep for few seconds to let the instance start.
time.sleep(5)

인스턴스가 시작되면, 대한 GREP mongo 과정에서의 가용성을 확인하기 위해 나열합니다.


ps -ef | grep mongo
mongodb      580       1 13 17:38 ?        00:00:00 /usr/bin/mongod --config /etc/mongodb.conf
root         612     610  0 17:38 ?        00:00:00 grep mongo

기본 엔드포인트를 쿼리하여 클러스터에 대한 정보를 검색합니다.

client = MongoClient()
client.list_database_names() # ['admin', 'local']
['admin', 'local']

데이터세트 탐색

이 튜토리얼의 목적을 위해, 다운로드 할 수 PetFinder의 데이터 집합을 수동으로 MongoDB를에 데이터를 공급. 이 분류 문제의 목표는 애완동물을 입양할지 여부를 예측하는 것입니다.

dataset_url = 'http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip'
csv_file = 'datasets/petfinder-mini/petfinder-mini.csv'
tf.keras.utils.get_file('petfinder_mini.zip', dataset_url,
                        extract=True, cache_dir='.')
pf_df = pd.read_csv(csv_file)
Downloading data from http://storage.googleapis.com/download.tensorflow.org/data/petfinder-mini.zip
1671168/1668792 [==============================] - 0s 0us/step
1679360/1668792 [==============================] - 0s 0us/step
pf_df.head()

자습서의 목적을 위해 레이블 열이 수정됩니다. 0은 애완 동물이 입양되지 않았음을 나타내고 1은 입양되었음을 나타냅니다.

# In the original dataset "4" indicates the pet was not adopted.
pf_df['target'] = np.where(pf_df['AdoptionSpeed']==4, 0, 1)

# Drop un-used columns.
pf_df = pf_df.drop(columns=['AdoptionSpeed', 'Description'])
# Number of datapoints and columns
len(pf_df), len(pf_df.columns)
(11537, 14)

데이터세트 분할

train_df, test_df = train_test_split(pf_df, test_size=0.3, shuffle=True)
print("Number of training samples: ",len(train_df))
print("Number of testing sample: ",len(test_df))
Number of training samples:  8075
Number of testing sample:  3462

mongo 컬렉션에 기차 및 테스트 데이터 저장

URI = "mongodb://localhost:27017"
DATABASE = "tfiodb"
TRAIN_COLLECTION = "train"
TEST_COLLECTION = "test"
db = client[DATABASE]
if "train" not in db.list_collection_names():
  db.create_collection(TRAIN_COLLECTION)
if "test" not in db.list_collection_names():
  db.create_collection(TEST_COLLECTION)
def store_records(collection, records):
  writer = tfio.experimental.mongodb.MongoDBWriter(
      uri=URI, database=DATABASE, collection=collection
  )
  for record in records:
      writer.write(record)
store_records(collection="train", records=train_df.to_dict("records"))
time.sleep(2)
store_records(collection="test", records=test_df.to_dict("records"))

tfio 데이터세트 준비

데이터가 클러스터에서 사용할 수 있습니다되면, mongodb.MongoDBIODataset 클래스는이 목적을 위해 활용된다. 에서 클래스 상속 tf.data.Dataset 따라서과의 모든 유용한 기능 노출 tf.data.Dataset 상자 밖으로.

훈련 데이터세트

train_ds = tfio.experimental.mongodb.MongoDBIODataset(
        uri=URI, database=DATABASE, collection=TRAIN_COLLECTION
    )

train_ds
Connection successful: mongodb://localhost:27017
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow/python/data/experimental/ops/counter.py:66: scan (from tensorflow.python.data.experimental.ops.scan_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.scan(...) instead
WARNING:tensorflow:From /usr/local/lib/python3.7/dist-packages/tensorflow_io/python/experimental/mongodb_dataset_ops.py:114: take_while (from tensorflow.python.data.experimental.ops.take_while_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.data.Dataset.take_while(...)
<MongoDBIODataset shapes: (), types: tf.string>

각 항목 train_ds JSON으로 디코딩 할 필요가있는 문자열입니다. 이렇게하려면 지정하여 컬럼의 서브 세트를 선택할 수 있습니다 TensorSpec

# Numeric features.
numerical_cols = ['PhotoAmt', 'Fee'] 

SPECS = {
    "target": tf.TensorSpec(tf.TensorShape([]), tf.int64, name="target"),
}
for col in numerical_cols:
  SPECS[col] = tf.TensorSpec(tf.TensorShape([]), tf.int32, name=col)
pprint(SPECS)
{'Fee': TensorSpec(shape=(), dtype=tf.int32, name='Fee'),
 'PhotoAmt': TensorSpec(shape=(), dtype=tf.int32, name='PhotoAmt'),
 'target': TensorSpec(shape=(), dtype=tf.int64, name='target')}
BATCH_SIZE=32
train_ds = train_ds.map(
        lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
    )

# Prepare a tuple of (features, label)
train_ds = train_ds.map(lambda v: (v, v.pop("target")))
train_ds = train_ds.batch(BATCH_SIZE)

train_ds
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>

데이터세트 테스트

test_ds = tfio.experimental.mongodb.MongoDBIODataset(
        uri=URI, database=DATABASE, collection=TEST_COLLECTION
    )
test_ds = test_ds.map(
        lambda x: tfio.experimental.serialization.decode_json(x, specs=SPECS)
    )
# Prepare a tuple of (features, label)
test_ds = test_ds.map(lambda v: (v, v.pop("target")))
test_ds = test_ds.batch(BATCH_SIZE)

test_ds
Connection successful: mongodb://localhost:27017
<BatchDataset shapes: ({PhotoAmt: (None,), Fee: (None,)}, (None,)), types: ({PhotoAmt: tf.int32, Fee: tf.int32}, tf.int64)>

케라스 전처리 레이어 정의

당으로 구조화 된 데이터 튜토리얼 , 사용하는 것이 좋습니다 Keras 전처리 레이어 가 더 직관적으로, 쉽게 모델을 통합 할 수 있습니다. 그러나 표준 feature_columns은 또한 사용할 수 있습니다.

의 더 나은 이해를 위해 preprocessing_layers 구조화 된 데이터 분류에의 참조하시기 바랍니다 구조화 된 데이터 튜토리얼

def get_normalization_layer(name, dataset):
  # Create a Normalization layer for our feature.
  normalizer = preprocessing.Normalization(axis=None)

  # Prepare a Dataset that only yields our feature.
  feature_ds = dataset.map(lambda x, y: x[name])

  # Learn the statistics of the data.
  normalizer.adapt(feature_ds)

  return normalizer
all_inputs = []
encoded_features = []

for header in numerical_cols:
  numeric_col = tf.keras.Input(shape=(1,), name=header)
  normalization_layer = get_normalization_layer(header, train_ds)
  encoded_numeric_col = normalization_layer(numeric_col)
  all_inputs.append(numeric_col)
  encoded_features.append(encoded_numeric_col)

모델 빌드, 컴파일 및 학습

# Set the parameters

OPTIMIZER="adam"
LOSS=tf.keras.losses.BinaryCrossentropy(from_logits=True)
METRICS=['accuracy']
EPOCHS=10
# Convert the feature columns into a tf.keras layer
all_features = tf.keras.layers.concatenate(encoded_features)

# design/build the model
x = tf.keras.layers.Dense(32, activation="relu")(all_features)
x = tf.keras.layers.Dropout(0.5)(x)
x = tf.keras.layers.Dense(64, activation="relu")(x)
x = tf.keras.layers.Dropout(0.5)(x)
output = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(all_inputs, output)
# compile the model
model.compile(optimizer=OPTIMIZER, loss=LOSS, metrics=METRICS)
# fit the model
model.fit(train_ds, epochs=EPOCHS)
Epoch 1/10
109/109 [==============================] - 1s 2ms/step - loss: 0.6261 - accuracy: 0.4711
Epoch 2/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5939 - accuracy: 0.6967
Epoch 3/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5900 - accuracy: 0.6993
Epoch 4/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5846 - accuracy: 0.7146
Epoch 5/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5824 - accuracy: 0.7178
Epoch 6/10
109/109 [==============================] - 0s 2ms/step - loss: 0.5778 - accuracy: 0.7233
Epoch 7/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5810 - accuracy: 0.7083
Epoch 8/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5791 - accuracy: 0.7149
Epoch 9/10
109/109 [==============================] - 0s 3ms/step - loss: 0.5742 - accuracy: 0.7207
Epoch 10/10
109/109 [==============================] - 0s 2ms/step - loss: 0.5797 - accuracy: 0.7083
<keras.callbacks.History at 0x7f743229fe90>

테스트 데이터에 대한 추론

res = model.evaluate(test_ds)
print("test loss, test acc:", res)
109/109 [==============================] - 0s 2ms/step - loss: 0.5696 - accuracy: 0.7383
test loss, test acc: [0.569588840007782, 0.7383015751838684]

참조: