Questa pagina è stata tradotta dall'API Cloud Translation.
Switch to English

Generazione di immagini con BigBiGAN

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza su GitHub Scarica notebook Vedi modelli TF Hub

Questo notebook è una demo per i modelli BigBiGAN disponibili su TF Hub .

BigBiGAN estende i GAN standard (Big) aggiungendo un modulo encoder che può essere utilizzato per l'apprendimento delle rappresentazioni senza supervisione. In parole povere, l'encoder inverte il generatore prevedendo i latenti z dati i dati reali x . Vedere il documento BigBiGAN su arXiv [1] per ulteriori informazioni su questi modelli.

Dopo esserti connesso a un runtime, inizia seguendo queste istruzioni:

  1. (Facoltativo) Aggiorna il module_path selezionato nella prima cella di codice sottostante per caricare un generatore BigBiGAN per un'architettura di codificatore diversa.
  2. Fare clic su Runtime> Esegui tutto per eseguire ciascuna cella in ordine. Successivamente, gli output, comprese le visualizzazioni dei campioni e delle ricostruzioni BigBiGAN, dovrebbero apparire automaticamente di seguito.

[1] Jeff Donahue e Karen Simonyan. Apprendimento della rappresentazione del contraddittorio su larga scala . arxiv: 1907.02544 , 2019.

Per prima cosa, imposta il percorso del modulo. Per impostazione predefinita, carichiamo il modello BigBiGAN con il codificatore più piccolo basato su ResNet-50 da https://tfhub.dev/deepmind/bigbigan-resnet50/1 . Per caricare il modello più grande basato su RevNet-50-x4 utilizzato per ottenere i migliori risultati di apprendimento della rappresentazione, commentare l'impostazione attiva module_path e rimuovere il commento dall'altra.

module_path = 'https://tfhub.dev/deepmind/bigbigan-resnet50/1'  # ResNet-50
# module_path = 'https://tfhub.dev/deepmind/bigbigan-revnet50x4/1'  # RevNet-50 x4

Impostare

import io
import IPython.display
import PIL.Image
from pprint import pformat

import numpy as np

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import tensorflow_hub as hub
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/compat/v2_compat.py:96: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term

Definisci alcune funzioni per visualizzare le immagini

def imgrid(imarray, cols=4, pad=1, padval=255, row_major=True):
  """Lays out a [N, H, W, C] image array as a single image grid."""
  pad = int(pad)
  if pad < 0:
    raise ValueError('pad must be non-negative')
  cols = int(cols)
  assert cols >= 1
  N, H, W, C = imarray.shape
  rows = N // cols + int(N % cols != 0)
  batch_pad = rows * cols - N
  assert batch_pad >= 0
  post_pad = [batch_pad, pad, pad, 0]
  pad_arg = [[0, p] for p in post_pad]
  imarray = np.pad(imarray, pad_arg, 'constant', constant_values=padval)
  H += pad
  W += pad
  grid = (imarray
          .reshape(rows, cols, H, W, C)
          .transpose(0, 2, 1, 3, 4)
          .reshape(rows*H, cols*W, C))
  if pad:
    grid = grid[:-pad, :-pad]
  return grid

def interleave(*args):
  """Interleaves input arrays of the same shape along the batch axis."""
  if not args:
    raise ValueError('At least one argument is required.')
  a0 = args[0]
  if any(a.shape != a0.shape for a in args):
    raise ValueError('All inputs must have the same shape.')
  if not a0.shape:
    raise ValueError('Inputs must have at least one axis.')
  out = np.transpose(args, [1, 0] + list(range(2, len(a0.shape) + 1)))
  out = out.reshape(-1, *a0.shape[1:])
  return out

def imshow(a, format='png', jpeg_fallback=True):
  """Displays an image in the given format."""
  a = a.astype(np.uint8)
  data = io.BytesIO()
  PIL.Image.fromarray(a).save(data, format)
  im_data = data.getvalue()
  try:
    disp = IPython.display.display(IPython.display.Image(im_data))
  except IOError:
    if jpeg_fallback and format != 'jpeg':
      print ('Warning: image was too large to display in format "{}"; '
             'trying jpeg instead.').format(format)
      return imshow(a, format='jpeg')
    else:
      raise
  return disp

def image_to_uint8(x):
  """Converts [-1, 1] float array to [0, 255] uint8."""
  x = np.asarray(x)
  x = (256. / 2.) * (x + 1.)
  x = np.clip(x, 0, 255)
  x = x.astype(np.uint8)
  return x

Carica un modulo BigBiGAN TF Hub e visualizza le sue funzionalità disponibili

# module = hub.Module(module_path, trainable=True, tags={'train'})  # training
module = hub.Module(module_path)  # inference

for signature in module.get_signature_names():
  print('Signature:', signature)
  print('Inputs:', pformat(module.get_input_info_dict(signature)))
  print('Outputs:', pformat(module.get_output_info_dict(signature)))
  print()
Signature: encode
Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>}
Outputs: {'avepool_feat': <hub.ParsedTensorInfo shape=(?, 2048) dtype=float32 is_sparse=False>,
 'bn_crelu_feat': <hub.ParsedTensorInfo shape=(?, 4096) dtype=float32 is_sparse=False>,
 'default': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>,
 'z_mean': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>,
 'z_sample': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>,
 'z_stdev': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>}

Signature: default
Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>}
Outputs: {'default': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>}

Signature: discriminate
Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 128, 128, 3) dtype=float32 is_sparse=False>,
 'z': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>}
Outputs: {'score_x': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>,
 'score_xz': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>,
 'score_z': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>}

Signature: generate
Inputs: {'z': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>}
Outputs: {'default': <hub.ParsedTensorInfo shape=(?, 128, 128, 3) dtype=float32 is_sparse=False>,
 'upsampled': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>}


Definire una classe wrapper per un comodo accesso a varie funzioni

class BigBiGAN(object):

  def __init__(self, module):
    """Initialize a BigBiGAN from the given TF Hub module."""
    self._module = module

  def generate(self, z, upsample=False):
    """Run a batch of latents z through the generator to generate images.

    Args:
      z: A batch of 120D Gaussian latents, shape [N, 120].

    Returns: a batch of generated RGB images, shape [N, 128, 128, 3], range
      [-1, 1].
    """
    outputs = self._module(z, signature='generate', as_dict=True)
    return outputs['upsampled' if upsample else 'default']

  def make_generator_ph(self):
    """Creates a tf.placeholder with the dtype & shape of generator inputs."""
    info = self._module.get_input_info_dict('generate')['z']
    return tf.placeholder(dtype=info.dtype, shape=info.get_shape())

  def gen_pairs_for_disc(self, z):
    """Compute generator input pairs (G(z), z) for discriminator, given z.

    Args:
      z: A batch of latents (120D standard Gaussians), shape [N, 120].

    Returns: a tuple (G(z), z) of discriminator inputs.
    """
    # Downsample 256x256 image x for 128x128 discriminator input.
    x = self.generate(z)
    return x, z

  def encode(self, x, return_all_features=False):
    """Run a batch of images x through the encoder.

    Args:
      x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
        [-1, 1].
      return_all_features: If True, return all features computed by the encoder.
        Otherwise (default) just return a sample z_hat.

    Returns: the sample z_hat of shape [N, 120] (or a dict of all features if
      return_all_features).
    """
    outputs = self._module(x, signature='encode', as_dict=True)
    return outputs if return_all_features else outputs['z_sample']

  def make_encoder_ph(self):
    """Creates a tf.placeholder with the dtype & shape of encoder inputs."""
    info = self._module.get_input_info_dict('encode')['x']
    return tf.placeholder(dtype=info.dtype, shape=info.get_shape())

  def enc_pairs_for_disc(self, x):
    """Compute encoder input pairs (x, E(x)) for discriminator, given x.

    Args:
      x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
        [-1, 1].

    Returns: a tuple (downsample(x), E(x)) of discriminator inputs.
    """
    # Downsample 256x256 image x for 128x128 discriminator input.
    x_down = tf.nn.avg_pool(x, ksize=2, strides=2, padding='SAME')
    z = self.encode(x)
    return x_down, z

  def discriminate(self, x, z):
    """Compute the discriminator scores for pairs of data (x, z).

    (x, z) must be batches with the same leading batch dimension, and joint
      scores are computed on corresponding pairs x[i] and z[i].

    Args:
      x: A batch of data (128x128 RGB images), shape [N, 128, 128, 3], range
        [-1, 1].
      z: A batch of latents (120D standard Gaussians), shape [N, 120].

    Returns:
      A dict of scores:
        score_xz: the joint scores for the (x, z) pairs.
        score_x: the unary scores for x only.
        score_z: the unary scores for z only.
    """
    inputs = dict(x=x, z=z)
    return self._module(inputs, signature='discriminate', as_dict=True)

  def reconstruct_x(self, x, use_sample=True, upsample=False):
    """Compute BigBiGAN reconstructions of images x via G(E(x)).

    Args:
      x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
        [-1, 1].
      use_sample: takes a sample z_hat ~ E(x). Otherwise, deterministically
        use the mean. (Though a sample z_hat may be far from the mean z,
        typically the resulting recons G(z_hat) and G(z) are very
        similar.
      upsample: if set, upsample the reconstruction to the input resolution
        (256x256). Otherwise return the raw lower resolution generator output
        (128x128).

    Returns: a batch of recons G(E(x)), shape [N, 256, 256, 3] if
      `upsample`, otherwise [N, 128, 128, 3].
    """
    if use_sample:
      z = self.encode(x)
    else:
      z = self.encode(x, return_all_features=True)['z_mean']
    recons = self.generate(z, upsample=upsample)
    return recons

  def losses(self, x, z):
    """Compute per-module BigBiGAN losses given data & latent sample batches.

    Args:
      x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
        [-1, 1].
      z: A batch of latents (120D standard Gaussians), shape [M, 120].

    For the original BigBiGAN losses, pass batches of size N=M=2048, with z's
    sampled from a 120D standard Gaussian (e.g., np.random.randn(2048, 120)),
    and x's sampled from the ImageNet (ILSVRC2012) training set with the
    "ResNet-style" preprocessing from:

        https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_preprocessing.py

    Returns:
      A dict of per-module losses:
        disc: loss for the discriminator.
        enc: loss for the encoder.
        gen: loss for the generator.
    """
    # Compute discriminator scores on (x, E(x)) pairs.
    # Downsample 256x256 image x for 128x128 discriminator input.
    scores_enc_x_dict = self.discriminate(*self.enc_pairs_for_disc(x))
    scores_enc_x = tf.concat([scores_enc_x_dict['score_xz'],
                              scores_enc_x_dict['score_x'],
                              scores_enc_x_dict['score_z']], axis=0)

    # Compute discriminator scores on (G(z), z) pairs.
    scores_gen_z_dict = self.discriminate(*self.gen_pairs_for_disc(z))
    scores_gen_z = tf.concat([scores_gen_z_dict['score_xz'],
                              scores_gen_z_dict['score_x'],
                              scores_gen_z_dict['score_z']], axis=0)

    disc_loss_enc_x = tf.reduce_mean(tf.nn.relu(1. - scores_enc_x))
    disc_loss_gen_z = tf.reduce_mean(tf.nn.relu(1. + scores_gen_z))
    disc_loss = disc_loss_enc_x + disc_loss_gen_z

    enc_loss = tf.reduce_mean(scores_enc_x)
    gen_loss = tf.reduce_mean(-scores_gen_z)

    return dict(disc=disc_loss, enc=enc_loss, gen=gen_loss)

Crea tensori da utilizzare in seguito per calcolare campioni, ricostruzioni, punteggi discriminatori e perdite

bigbigan = BigBiGAN(module)

# Make input placeholders for x (`enc_ph`) and z (`gen_ph`).
enc_ph = bigbigan.make_encoder_ph()
gen_ph = bigbigan.make_generator_ph()

# Compute samples G(z) from encoder input z (`gen_ph`).
gen_samples = bigbigan.generate(gen_ph)

# Compute reconstructions G(E(x)) of encoder input x (`enc_ph`).
recon_x = bigbigan.reconstruct_x(enc_ph, upsample=True)

# Compute encoder features used for representation learning evaluations given
# encoder input x (`enc_ph`).
enc_features = bigbigan.encode(enc_ph, return_all_features=True)

# Compute discriminator scores for encoder pairs (x, E(x)) given x (`enc_ph`)
# and generator pairs (G(z), z) given z (`gen_ph`).
disc_scores_enc = bigbigan.discriminate(*bigbigan.enc_pairs_for_disc(enc_ph))
disc_scores_gen = bigbigan.discriminate(*bigbigan.gen_pairs_for_disc(gen_ph))

# Compute losses.
losses = bigbigan.losses(enc_ph, gen_ph)
INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

INFO:tensorflow:Saver not created because there are no variables in the graph to restore

Crea una sessione TensorFlow e inizializza le variabili

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

Campioni del generatore

Per prima cosa, visualizzeremo campioni dal generatore BigBiGAN pre-addestrato campionando gli input del generatore z da una gaussiana standard (tramite np.random.randn ) e visualizzando le immagini che produce. Finora non stiamo andando oltre le capacità di un GAN standard - stiamo solo usando il generatore (e ignorando l'encoder) per ora.

feed_dict = {gen_ph: np.random.randn(32, 120)}
_out_samples = sess.run(gen_samples, feed_dict=feed_dict)
print('samples shape:', _out_samples.shape)
imshow(imgrid(image_to_uint8(_out_samples), cols=4))
samples shape: (32, 128, 128, 3)

png

Carica test_images dal dataset TF-Flowers

BigBiGAN è addestrato su ImageNet, ma poiché è troppo grande per lavorarci in questa demo, utilizziamo il set di dati TF-Flowers [1] più piccolo come input per visualizzare le ricostruzioni e le funzioni dell'encoder di calcolo.

In questa cella carichiamo TF-Flowers (scaricando il set di dati se necessario) e memorizziamo un batch fisso di campioni di immagini RGB 256x256 in un array NumPy test_images .

[1] https://www.tensorflow.org/datasets/catalog/tf_flowers

def get_flowers_data():
  """Returns a [32, 256, 256, 3] np.array of preprocessed TF-Flowers samples."""
  import tensorflow_datasets as tfds
  ds, info = tfds.load('tf_flowers', split='train', with_info=True)

  # Just get the images themselves as we don't need labels for this demo.
  ds = ds.map(lambda x: x['image'])

  # Filter out small images (with minor edge length <256).
  ds = ds.filter(lambda x: tf.reduce_min(tf.shape(x)[:2]) >= 256)

  # Take the center square crop of the image and resize to 256x256.
  def crop_and_resize(image):
    imsize = tf.shape(image)[:2]
    minor_edge = tf.reduce_min(imsize)
    start = (imsize - minor_edge) // 2
    stop = start + minor_edge
    cropped_image = image[start[0] : stop[0], start[1] : stop[1]]
    resized_image = tf.image.resize_bicubic([cropped_image], [256, 256])[0]
    return resized_image
  ds = ds.map(crop_and_resize)

  # Convert images from [0, 255] uint8 to [-1, 1] float32.
  ds = ds.map(lambda image: tf.cast(image, tf.float32) / (255. / 2.) - 1)

  # Take the first 32 samples.
  ds = ds.take(32)

  return np.array(list(tfds.as_numpy(ds)))

test_images = get_flowers_data()
Downloading and preparing dataset tf_flowers/3.0.1 (download: 218.21 MiB, generated: 221.83 MiB, total: 440.05 MiB) to /home/kbuilder/tensorflow_datasets/tf_flowers/3.0.1...

Warning:absl:Dataset tf_flowers is hosted on GCS. It will automatically be downloaded to your
local data directory. If you'd instead prefer to read directly from our public
GCS bucket (recommended if you're running on GCP), you can instead pass
`try_gcs=True` to `tfds.load` or set `data_dir=gs://tfds-data/datasets`.


Dataset tf_flowers downloaded and prepared to /home/kbuilder/tensorflow_datasets/tf_flowers/3.0.1. Subsequent calls will reuse this data.

Ricostruzioni

Ora visualizziamo le ricostruzioni BigBiGAN passando immagini reali attraverso l'encoder e di nuovo attraverso il generatore, calcolando G(E(x)) date immagini x . Di seguito, le immagini di input x sono mostrate nella colonna di sinistra e le ricostruzioni corrispondenti sono mostrate a destra.

Si noti che le ricostruzioni non corrispondono perfettamente ai pixel con le immagini in ingresso; piuttosto, tendono a catturare il contenuto semantico di livello superiore dell'input mentre "dimenticano" la maggior parte dei dettagli di basso livello. Ciò suggerisce che il codificatore BigBiGAN potrebbe imparare a catturare i tipi di informazioni semantiche di alto livello sulle immagini che vorremmo vedere in un approccio di apprendimento della rappresentazione.

Si noti inoltre che le ricostruzioni grezze delle immagini in ingresso 256x256 sono alla risoluzione inferiore prodotta dal nostro generatore - 128x128. Li sovracampioniamo per scopi di visualizzazione.

test_images_batch = test_images[:16]
_out_recons = sess.run(recon_x, feed_dict={enc_ph: test_images_batch})
print('reconstructions shape:', _out_recons.shape)

inputs_and_recons = interleave(test_images_batch, _out_recons)
print('inputs_and_recons shape:', inputs_and_recons.shape)
imshow(imgrid(image_to_uint8(inputs_and_recons), cols=2))
reconstructions shape: (16, 256, 256, 3)
inputs_and_recons shape: (32, 256, 256, 3)

png

Caratteristiche dell'encoder

Ora dimostriamo come calcolare le caratteristiche dal codificatore utilizzato per le valutazioni dell'apprendimento della rappresentazione standard.

Queste funzionalità potrebbero essere utilizzate in un classificatore lineare o basato sui vicini più vicini. avepool_feat la funzione standard presa dopo il raggruppamento medio globale (chiave avepool_feat ) così come la funzione più grande "BN + CReLU" (chiave bn_crelu_feat ) utilizzata per ottenere i migliori risultati.

_out_features = sess.run(enc_features, feed_dict={enc_ph: test_images_batch})
print('AvePool features shape:', _out_features['avepool_feat'].shape)
print('BN+CReLU features shape:', _out_features['bn_crelu_feat'].shape)
AvePool features shape: (16, 2048)
BN+CReLU features shape: (16, 4096)

Punteggi e sconfitte discriminatori

Infine, calcoleremo i punteggi e le perdite del discriminatore su batch di coppie di codificatore e generatore. Queste perdite potrebbero essere trasferite a un ottimizzatore per addestrare BigBiGAN.

Usiamo il nostro gruppo di immagini sopra come input del codificatore x , calcolando il punteggio del codificatore come D(x, E(x)) . Per gli ingressi del generatore campioniamo z da una gaussiana standard 120D tramite np.random.randn , calcolando il punteggio del generatore come D(G(z), z) .

Il discriminatore predice un punteggio comune score_xz per le coppie (x, z) nonché punteggi unari score_x e score_z per x e z , rispettivamente. È addestrato per dare punteggi alti (positivi) alle coppie di codificatori e punteggi bassi (negativi) alle coppie di generatori. Ciò vale principalmente di seguito, sebbene il score_z sia negativo in entrambi i casi, indicando che le uscite dell'encoder E(x) assomigliano a campioni reali di una gaussiana.

feed_dict = {enc_ph: test_images, gen_ph: np.random.randn(32, 120)}
_out_scores_enc, _out_scores_gen, _out_losses = sess.run(
    [disc_scores_enc, disc_scores_gen, losses], feed_dict=feed_dict)
print('Encoder scores:', {k: v.mean() for k, v in _out_scores_enc.items()})
print('Generator scores:', {k: v.mean() for k, v in _out_scores_gen.items()})
print('Losses:', _out_losses)
Encoder scores: {'score_z': -0.504073, 'score_xz': 0.6967757, 'score_x': 1.462167}
Generator scores: {'score_z': -0.43738103, 'score_xz': -1.0446262, 'score_x': -0.57062364}
Losses: {'disc': 1.1874465, 'enc': 0.55171305, 'gen': 0.6842103}