tensorflow :: ops :: SparseApplyFtrl

#include <training_ops.h>

مطابق طرح Ftrl-proximal ورودی های مربوطه را در '* var' به روز کنید.

خلاصه

این برای ردیفی است که برای آن grad داریم ، var ، تجمع و خطی را به صورت زیر به روز می کنیم: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$

استدلال ها:

  • دامنه: یک شی Sc Scope
  • var: باید از یک متغیر () باشد.
  • تجمع: باید از یک متغیر باشد ().
  • linear: باید از یک متغیر () باشد.
  • grad: شیب.
  • شاخص ها: برداري از شاخص ها در بعد اول var و تجمع.
  • lr: عامل مقیاس گذاری. باید اسکالر باشد.
  • l1: تنظیم L1. باید اسکالر باشد.
  • l2: تنظیم L2. باید اسکالر باشد.
  • lr_power: عامل مقیاس گذاری. باید اسکالر باشد.

ویژگی های اختیاری (به Attrs مراجعه کنید):

  • use_locking: اگر True ، به روزرسانی سنسورهای var و تجمع با قفل محافظت می شود. در غیر این صورت رفتار تعریف نشده است ، اما ممکن است مشاجره کمتری از خود نشان دهد.

بازده:

  • Output : همان "var" است.

سازندگان و ویرانگران

SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs)

صفات عمومی

operation
out

کارکردهای عمومی

node () const
::tensorflow::Node *
operator::tensorflow::Input () const
operator::tensorflow::Output () const

توابع استاتیک عمومی

UseLocking (bool x)

سازه ها

tensorflow :: ops :: SparseApplyFtrl :: Attrs

تنظیم کننده های ویژگی اختیاری برای SparseApplyFtrl .

صفات عمومی

عمل

Operation operation

بیرون

::tensorflow::Output out

کارکردهای عمومی

SparseApplyFtrl

 SparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power
)

SparseApplyFtrl

 SparseApplyFtrl(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input linear,
  ::tensorflow::Input grad,
  ::tensorflow::Input indices,
  ::tensorflow::Input lr,
  ::tensorflow::Input l1,
  ::tensorflow::Input l2,
  ::tensorflow::Input lr_power,
  const SparseApplyFtrl::Attrs & attrs
)

گره

::tensorflow::Node * node() const 

عملگر :: tensorflow :: ورودی

 operator::tensorflow::Input() const 

عملگر :: tensorflow :: خروجی

 operator::tensorflow::Output() const 

توابع استاتیک عمومی

استفاده از قفل کردن

Attrs UseLocking(
  bool x
)