tensorflow :: ops :: SparseApplyProximalAdagrad
#include <training_ops.h>
مطابق الگوریتم FOBOS ورودی های به روزرسانی پراکنده در "* var" و "* تجمع".
خلاصه
این برای ردیفی است که برای آن grad داریم ، var را به صورت زیر به روز می کنیم: $$accum += grad * grad$$ $$prox_v = var$$ $$prox_v -= lr * grad * (1 / sqrt(accum))$$ $$var = sign(prox_v)/(1+lr*l2) * max{|prox_v|-lr*l1,0}$$
استدلال ها:
- دامنه: یک شی Sc Scope
- var: باید از یک متغیر () باشد.
- تجمع: باید از یک متغیر باشد ().
- lr: میزان یادگیری. باید اسکالر باشد.
- l1: تنظیم L1. باید اسکالر باشد.
- l2: تنظیم L2. باید اسکالر باشد.
- grad: شیب.
- شاخص ها: برداري از شاخص ها در بعد اول var و تجمع.
ویژگی های اختیاری (به Attrs
مراجعه کنید):
- use_locking: اگر درست باشد ، به روزرسانی سنسورهای var و تجمع با قفل محافظت می شود. در غیر این صورت رفتار تعریف نشده است ، اما ممکن است مشاجره کمتری از خود نشان دهد.
بازده:
-
Output
: همان "var" است.
سازندگان و ویرانگران | |
---|---|
SparseApplyProximalAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input grad, :: tensorflow::Input indices) | |
SparseApplyProximalAdagrad (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyProximalAdagrad::Attrs & attrs) |
صفات عمومی | |
---|---|
operation | |
out |
کارکردهای عمومی | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
توابع استاتیک عمومی | |
---|---|
UseLocking (bool x) |
سازه ها | |
---|---|
tensorflow :: ops :: SparseApplyProximalAdagrad :: Attrs | تنظیم کننده های ویژگی اختیاری برای SparseApplyProximalAdagrad . |
صفات عمومی
عمل
Operation operation
بیرون
::tensorflow::Output out
کارکردهای عمومی
SparseApplyProximalAdagrad
SparseApplyProximalAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input grad, ::tensorflow::Input indices )
SparseApplyProximalAdagrad
SparseApplyProximalAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input grad, ::tensorflow::Input indices, const SparseApplyProximalAdagrad::Attrs & attrs )
گره
::tensorflow::Node * node() const
عملگر :: tensorflow :: ورودی
operator::tensorflow::Input() const
عملگر :: tensorflow :: خروجی
operator::tensorflow::Output() const
توابع استاتیک عمومی
استفاده از قفل کردن
Attrs UseLocking( bool x )
جز در مواردی که غیر از این ذکر شده باشد،محتوای این صفحه تحت مجوز Creative Commons Attribution 4.0 License است. نمونه کدها نیز دارای مجوز Apache 2.0 License است. برای اطلاع از جزئیات، به خطمشیهای سایت Google Developers مراجعه کنید. جاوا علامت تجاری ثبتشده Oracle و/یا شرکتهای وابسته به آن است.
تاریخ آخرین بهروزرسانی 2020-04-20 بهوقت ساعت هماهنگ جهانی.