tf.compat.v1.flags.tf_decorator.TFDecorator
Stay organized with collections
Save and categorize content based on your preferences.
Base class for all TensorFlow decorators.
tf.compat.v1.flags.tf_decorator.TFDecorator(
decorator_name, target, decorator_doc='', decorator_argspec=None
)
TFDecorator captures and exposes the wrapped target, and provides details
about the current decorator.
Attributes |
decorated_target
|
|
decorator_argspec
|
|
decorator_doc
|
|
decorator_name
|
|
Methods
__call__
View source
__call__(
*args, **kwargs
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2020-10-01 UTC."],[],[],null,["# tf.compat.v1.flags.tf_decorator.TFDecorator\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/util/tf_decorator.py#L229-L280) |\n\nBase class for all TensorFlow decorators.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.app.flags.tf_decorator.TFDecorator`](/api_docs/python/tf/compat/v1/flags/tf_decorator/TFDecorator)\n\n\u003cbr /\u003e\n\n tf.compat.v1.flags.tf_decorator.TFDecorator(\n decorator_name, target, decorator_doc='', decorator_argspec=None\n )\n\nTFDecorator captures and exposes the wrapped target, and provides details\nabout the current decorator.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|---------------------|---------------|\n| `decorated_target` | \u003cbr /\u003e \u003cbr /\u003e |\n| `decorator_argspec` | \u003cbr /\u003e \u003cbr /\u003e |\n| `decorator_doc` | \u003cbr /\u003e \u003cbr /\u003e |\n| `decorator_name` | \u003cbr /\u003e \u003cbr /\u003e |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/util/tf_decorator.py#L259-L260) \n\n __call__(\n *args, **kwargs\n )\n\nCall self as a function."]]