View source on GitHub

The most basic RNN cell.

    num_units, activation=None, reuse=None, name=None, dtype=None, **kwargs

This is used only for TfLite, it provides hints and it also makes the variables in the desired for the tflite ops.


  • num_units: int, The number of units in the RNN cell.
  • activation: Nonlinearity to use. Default: tanh. It could also be string that is within Keras activation function names.
  • reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. Raises an error if not True and the existing scope already has the given variables.
  • name: String, the name of the layer. Layers with the same name will share weights, but to avoid mistakes we require reuse=True in such cases.
  • dtype: Default dtype of the layer (default of None means use the type of the first input). Required when build is called before call.
  • **kwargs: Dict, keyword named properties for common layer attributes, like trainable etc when constructing the cell from configs of get_config().



  • output_size: Integer or TensorShape: size of outputs produced by this cell.

  • scope_name

  • state_size: size(s) of state(s) used by this cell.

    It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.


  • ValueError: If the existing scope already has the given variables.



View source

    inputs=None, batch_size=None, dtype=None


View source

    batch_size, dtype

Return zero-filled state tensor(s).


  • batch_size: int, float, or unit Tensor representing the batch size.
  • dtype: the data type to use for the state.


If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size, state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size, s] for each s in state_size.