Missed TensorFlow World? Check out the recap. Learn more

tf.keras.preprocessing.image.apply_affine_transform

Applies an affine transformation specified by the parameters given.

Aliases:

  • tf.compat.v1.keras.preprocessing.image.apply_affine_transform
  • tf.compat.v2.keras.preprocessing.image.apply_affine_transform
tf.keras.preprocessing.image.apply_affine_transform(
    x,
    theta=0,
    tx=0,
    ty=0,
    shear=0,
    zx=1,
    zy=1,
    row_axis=0,
    col_axis=1,
    channel_axis=2,
    fill_mode='nearest',
    cval=0.0,
    order=1
)

Arguments

x: 2D numpy array, single image.
theta: Rotation angle in degrees.
tx: Width shift.
ty: Heigh shift.
shear: Shear angle in degrees.
zx: Zoom in x direction.
zy: Zoom in y direction
row_axis: Index of axis for rows in the input image.
col_axis: Index of axis for columns in the input image.
channel_axis: Index of axis for channels in the input image.
fill_mode: Points outside the boundaries of the input
    are filled according to the given mode
    (one of `{'constant', 'nearest', 'reflect', 'wrap'}`).
cval: Value used for points outside the boundaries
    of the input if `mode='constant'`.
order: int, order of interpolation

Returns

The transformed version of the input.