Google I/O is a wrap! Catch up on TensorFlow sessions

# tf.compat.v1.nn.sampled_softmax_loss

Computes and returns the sampled softmax training loss.

This is a faster way to train a softmax classifier over a huge number of classes.

This operation is for training only. It is generally an underestimate of the full softmax loss.

A common use case is to use this method for training, and calculate the full softmax loss for evaluation or inference. In this case, you must set `partition_strategy="div"` for the two losses to be consistent, as in the following example:

``````if mode == "train":
loss = tf.nn.sampled_softmax_loss(
weights=weights,
biases=biases,
labels=labels,
inputs=inputs,
...,
partition_strategy="div")
elif mode == "eval":
logits = tf.matmul(inputs, tf.transpose(weights))
logits = tf.nn.bias_add(logits, biases)
labels_one_hot = tf.one_hot(labels, n_classes)
loss = tf.nn.softmax_cross_entropy_with_logits(
labels=labels_one_hot,
logits=logits)
``````

Also see Section 3 of Jean et al., 2014 (pdf) for the math.

`weights` A `Tensor` of shape `[num_classes, dim]`, or a list of `Tensor` objects whose concatenation along dimension 0 has shape [num_classes, dim]. The (possibly-sharded) class embeddings.
`biases` A `Tensor` of shape `[num_classes]`. The class biases.
`labels` A `Tensor` of type `int64` and shape ```[batch_size, num_true]```. The target classes. Note that this format differs from the `labels` argument of `nn.softmax_cross_entropy_with_logits`.
`inputs` A `Tensor` of shape `[batch_size, dim]`. The forward activations of the input network.
`num_sampled` An `int`. The number of classes to randomly sample per batch.
`num_classes` An `int`. The number of possible classes.
`num_true` An `int`. The number of target classes per training example.
`sampled_values` a tuple of (`sampled_candidates`, `true_expected_count`, `sampled_expected_count`) returned by a `*_candidate_sampler` function. (if None, we default to `log_uniform_candidate_sampler`)
`remove_accidental_hits` A `bool`. whether to remove "accidental hits" where a sampled class equals one of the target classes. Default is True.
`partition_strategy` A string specifying the partitioning strategy, relevant if `len(weights) > 1`. Currently `"div"` and `"mod"` are supported. Default is `"mod"`. See `tf.nn.embedding_lookup` for more details.
`name` A name for the operation (optional).
`seed` random seed for candidate sampling. Default to None, which doesn't set the op-level random seed for candidate sampling.

A `batch_size` 1-D tensor of per-example sampled softmax losses.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]