Help protect the Great Barrier Reef with TensorFlow on Kaggle

tf.keras.losses.CategoricalCrossentropy

Computes the crossentropy loss between the labels and predictions.

Use this crossentropy loss function when there are two or more label classes. We expect labels to be provided in a one_hot representation. If you want to provide labels as integers, please use SparseCategoricalCrossentropy loss. There should be # classes floating point values per feature.

In the snippet below, there is # classes floating pointing values per example. The shape of both y_pred and y_true are [batch_size, num_classes].

Usage:

cce = tf.keras.losses.CategoricalCrossentropy()
loss = cce(
[[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]],
[[.9, .05, .05], [.05, .89, .06], [.05, .01, .94]])
print('Loss: ', loss.numpy())  # Loss: 0.0945

Usage with the compile API:

model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.CategoricalCrossentropy())

from_logits Whether y_pred is expected to be a logits tensor. By default, we assume that y_pred encodes a probability distribution. Note: Using from_logits=True may be more numerically stable.
label_smoothing Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. label_smoothing=0.2 means that we will use a value of 0.1 for label 0 and 0.9 for label 1"
reduction (Optional) Type of tf.keras.losses.Reduction to apply to loss. Default value is AUTO. AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE. When used with tf.distribute.Strategy, outside of built-in training loops such as tf.keras compile and fit, using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see https://www.tensorflow.org/alpha/tutorials/distribute/training_loops for more details on this.
name Optional name for the op.

Methods

from_config

View source

Instantiates a Loss from its config (output of get_config()).

Args
config Output of get_config().

Returns
A Loss instance.

View source

__call__

View source

Invokes the Loss instance.

Args
y_true Ground truth values. shape = [batch_size, d0, .. dN]
y_pred The predicted values. shape = [batch_size, d0, .. dN]
sample_weight Optional sample_weight acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If sample_weight is a tensor of size [batch_size], then the total loss for each sample of the batch is rescaled by the corresponding element in the sample_weight vector. If the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to this shape), then each loss element of y_pred is scaled by the corresponding value of sample_weight. (Note ondN-1: all loss functions reduce by 1 dimension, usually axis=-1.)

Returns
Weighted loss float Tensor. If reduction is NONE, this has shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note dN-1 because all loss functions reduce by 1 dimension, usually axis=-1.)

Raises
ValueError If the shape of sample_weight is invalid.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]