# tf.linalg.expm

Computes the matrix exponential of one or more square matrices.

exp(A) = \sum_{n=0}^\infty A^n/n!

The exponential is computed using a combination of the scaling and squaring method and the Pade approximation. Details can be found in: Nicholas J. Higham, "The scaling and squaring method for the matrix exponential revisited," SIAM J. Matrix Anal. Applic., 26:1179-1193, 2005.

The input is a tensor of shape [..., M, M] whose inner-most 2 dimensions form square matrices. The output is a tensor of the same shape as the input containing the exponential for all input submatrices [..., :, :].

input A Tensor. Must be float16, float32, float64, complex64, or complex128 with shape [..., M, M].
name A name to give this Op (optional).

the matrix exponential of the input.

ValueError An unsupported type is provided as input.

#### Scipy Compatibility

Equivalent to scipy.linalg.expm

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]