tfma.view.render_slicing_metrics
Stay organized with collections
Save and categorize content based on your preferences.
Renders the slicing metrics view as widget.
tfma.view.render_slicing_metrics(
result: tfma.EvalResult
,
slicing_column: Optional[str] = None,
slicing_spec: Optional[Union[slicer.SingleSliceSpec, tfma.SlicingSpec
]] = None,
weighted_example_column: Optional[str] = None,
event_handlers: Optional[Callable[[Dict[str, Union[str, float]]], None]] = None
) -> Optional[visualization.SlicingMetricsViewer]
Used in the notebooks
Args |
result
|
An tfma.EvalResult.
|
slicing_column
|
The column to slice on.
|
slicing_spec
|
The tfma.SlicingSpec to filter results. If neither column nor
spec is set, show overall.
|
weighted_example_column
|
Override for the weighted example column. This can
be used when different weights are applied in different aprts of the model
(eg: multi-head).
|
event_handlers
|
The event handlers
|
Returns |
A SlicingMetricsViewer object if in Jupyter notebook; None if in Colab.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[{
"type": "thumb-down",
"id": "missingTheInformationINeed",
"label":"Missing the information I need"
},{
"type": "thumb-down",
"id": "tooComplicatedTooManySteps",
"label":"Too complicated / too many steps"
},{
"type": "thumb-down",
"id": "outOfDate",
"label":"Out of date"
},{
"type": "thumb-down",
"id": "samplesCodeIssue",
"label":"Samples / code issue"
},{
"type": "thumb-down",
"id": "otherDown",
"label":"Other"
}]
[{
"type": "thumb-up",
"id": "easyToUnderstand",
"label":"Easy to understand"
},{
"type": "thumb-up",
"id": "solvedMyProblem",
"label":"Solved my problem"
},{
"type": "thumb-up",
"id": "otherUp",
"label":"Other"
}]
{"lastModified": "Last updated 2024-04-26 UTC."}