Join us at DevFest for Ukraine June 14-15 Online Register now

tft.experimental.get_vocabulary_size_by_name

Gets the size of a vocabulary created using tft.vocabulary.

Used in the notebooks

Used in the tutorials

This is the number of keys in the output vocab_filename and does not include number of OOV buckets.

vocab_filename The name of the vocabulary file whose size is to be retrieved.

Example:

def preprocessing_fn(inputs):
  num_oov_buckets = 1
  x_int = tft.compute_and_apply_vocabulary(
    inputs['x'], vocab_filename='my_vocab',
    num_oov_buckets=num_oov_buckets)
  depth = (
    tft.experimental.get_vocabulary_size_by_name('my_vocab') +
    num_oov_buckets)
  x_encoded = tf.one_hot(
    x_int, depth=tf.cast(depth, tf.int32), dtype=tf.int64)
  return {'x_encoded': x_encoded}
raw_data = [dict(x='foo'), dict(x='foo'), dict(x='bar')]
feature_spec = dict(x=tf.io.FixedLenFeature([], tf.string))
raw_data_metadata = tft.DatasetMetadata.from_feature_spec(feature_spec)
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
  transformed_dataset, transform_fn = (
      (raw_data, raw_data_metadata)
      | tft_beam.AnalyzeAndTransformDataset(preprocessing_fn))
transformed_data, transformed_metadata = transformed_dataset
transformed_data
[{'x_encoded': array([1, 0, 0])}, {'x_encoded': array([1, 0, 0])},
{'x_encoded': array([0, 1, 0])}]

An integer tensor containing the size of the requested vocabulary.

ValueError if no vocabulary size found for the given vocab_filename.