Applies a user-provided PTransform over the whole dataset.

Note that in order to have asset files copied correctly, any outputs that represent asset filenames must be added to the tf.GraphKeys.ASSET_FILEPATHS collection by the caller if using Transform's APIs in compat v1 mode.


class MeanPerKey(beam.PTransform):
  def expand(self, pcoll: beam.PCollection[Tuple[np.ndarray, np.ndarray]]) -> Tuple[beam.PCollection[np.ndarray], beam.PCollection[np.ndarray]]:
    def extract_output(key_value_pairs):
      keys, values = zip(*key_value_pairs)
      return [beam.TaggedOutput('keys', keys),
              beam.TaggedOutput('values', values)]
    return tuple(
        | 'ZipAndFlatten' >> beam.FlatMap(lambda batches: list(zip(*batches)))
        | 'MeanPerKey' >> beam.CombinePerKey(beam.combiners.MeanCombineFn())
        | 'ToList' >> beam.combiners.ToList()
        | 'Extract' >> beam.FlatMap(extract_output).with_outputs(
            'keys', 'values'))
def preprocessing_fn(inputs):
  outputs = tft.experimental.ptransform_analyzer(
      inputs=[inputs['s'], inputs['x']],
      output_dtypes=[tf.string, tf.float32],
      output_shapes=[[2], [2]])
  (keys, means) = outputs
  mean_a = tf.reshape(tf.gather(means, tf.where(keys == 'a')), [])
  return { 'x/mean_a': inputs['x'] / mean_a }
raw_data = [dict(x=1, s='a'), dict(x=8, s='b'), dict(x=3, s='a')]
feature_spec = dict([], tf.float32),[], tf.string))
raw_data_metadata = tft.DatasetMetadata.from_feature_spec(feature_spec)
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
  transformed_dataset, transform_fn = (
      (raw_data, raw_data_metadata)
      | tft_beam.AnalyzeAndTransformDataset(preprocessing_fn))
transformed_data, transformed_metadata = transformed_dataset
[{'x/mean_a': 0.5}, {'x/mean_a': 4.0}, {'x/mean_a': 1.5}]

inputs An ordered collection of input Tensors.
ptransform A Beam PTransform that accepts a Beam PCollection where each element is a tuple of ndarrays. Each element in the tuple contains a batch of values for the corresponding input tensor of the analyzer and maintain their shapes and dtypes. It returns a PCollection, or a tuple of PCollections, each containing a single element which is an ndarray or a list of primitive types. The contents of these output PCollections must be consistent with the given values of output_dtypes and output_shapes. It may inherit from tft_beam.experimental.PTransformAnalyzer if access to a temp base directory is needed. Alternatively, it could be an instance of tft.experimental.CacheablePTransformAnalyzer in order to enable cache for this analyzer, when analyzer cache is enabled for this pipeline.
output_dtypes An ordered collection of TensorFlow dtypes of the output of the analyzer.
output_shapes An ordered collection of shapes of the output of the analyzer. Must have the same length as output_dtypes.
output_asset_default_values (Optional) An ordered collection of optional bytes aligned with output_dtypes/output_shapes. Every item in this collection which is not None indicates that the output is a TF asset path, and its value would be used as the default value of this asset file prior to analysis.
name (Optional) Similar to a TF op name. Used to define a unique scope for this analyzer, which can be used for debugging info.

A list of output Tensors. These will have dtype and shape as specified by output_dtypes and output_shapes.

ValueError If output_dtypes and output_shapes have different lengths.