Сохраните дату! Google I / O возвращается 18-20 мая Зарегистрируйтесь сейчас
Эта страница переведена с помощью Cloud Translation API.
Switch to English

Изучение шарнирных встраиваний TF-Hub CORD-19

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть на GitHub Скачать блокнот См. Модель TF Hub

Модуль встраивания текста CORD-19 Swivel от TF-Hub (https: //tfhub.dev/tensorflow/cord-19/swivel-128d/1) был создан для поддержки исследователей, анализирующих текст на естественных языках, связанный с COVID-19. Эти вложения были обучены заголовкам, авторам, рефератам, основным текстам и ссылочным заголовкам статей в наборе данных CORD-19 .

В этом колабе мы:

  • Анализируйте семантически похожие слова в пространстве вложения
  • Обучите классификатор на наборе данных SciCite, используя вложения CORD-19

Настраивать

import functools
import itertools
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd

import tensorflow.compat.v1 as tf
tf.disable_eager_execution()
tf.logging.set_verbosity('ERROR')

import tensorflow_datasets as tfds
import tensorflow_hub as hub

try:
  from google.colab import data_table
  def display_df(df):
    return data_table.DataTable(df, include_index=False)
except ModuleNotFoundError:
  # If google-colab is not available, just display the raw DataFrame
  def display_df(df):
    return df

Проанализируйте вложения

Давайте начнем с анализа вложения путем вычисления и построения корреляционной матрицы между различными терминами. Если встраивание научилось успешно улавливать значение разных слов, векторы встраивания семантически похожих слов должны быть близко друг к другу. Давайте взглянем на некоторые термины, связанные с COVID-19.

# Use the inner product between two embedding vectors as the similarity measure
def plot_correlation(labels, features):
  corr = np.inner(features, features)
  corr /= np.max(corr)
  sns.heatmap(corr, xticklabels=labels, yticklabels=labels)


with tf.Graph().as_default():
  # Load the module
  query_input = tf.placeholder(tf.string)
  module = hub.Module('https://tfhub.dev/tensorflow/cord-19/swivel-128d/1')
  embeddings = module(query_input)

  with tf.train.MonitoredTrainingSession() as sess:

    # Generate embeddings for some terms
    queries = [
        # Related viruses
        "coronavirus", "SARS", "MERS",
        # Regions
        "Italy", "Spain", "Europe",
        # Symptoms
        "cough", "fever", "throat"
    ]

    features = sess.run(embeddings, feed_dict={query_input: queries})
    plot_correlation(queries, features)

PNG

Мы видим, что встраивание успешно уловило значение различных терминов. Каждое слово похоже на другие слова своего кластера (например, «коронавирус» сильно коррелирует с «SARS» и «MERS»), в то время как они отличаются от терминов других кластеров (например, сходство между «SARS» и «Испания» составляет близко к 0).

Теперь посмотрим, как мы можем использовать эти вложения для решения конкретной задачи.

SciCite: классификация намерений цитирования

В этом разделе показано, как можно использовать встраивание для последующих задач, таких как классификация текста. Мы будем использовать набор данных SciCite из TensorFlow Datasets, чтобы классифицировать цели цитирования в академических статьях. Учитывая предложение с цитатой из академической статьи, определите, является ли основная цель цитирования справочной информацией, использованием методов или сравнением результатов.

Настройте набор данных из TFDS

Downloading and preparing dataset scicite/1.0.0 (download: 22.12 MiB, generated: Unknown size, total: 22.12 MiB) to /home/kbuilder/tensorflow_datasets/scicite/1.0.0...
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/scicite/1.0.0.incompleteHWK5SE/scicite-train.tfrecord
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/scicite/1.0.0.incompleteHWK5SE/scicite-validation.tfrecord
Shuffling and writing examples to /home/kbuilder/tensorflow_datasets/scicite/1.0.0.incompleteHWK5SE/scicite-test.tfrecord
Dataset scicite downloaded and prepared to /home/kbuilder/tensorflow_datasets/scicite/1.0.0. Subsequent calls will reuse this data.

Давайте посмотрим на несколько помеченных примеров из обучающей выборки.

Обучение классификатора намерений citaton

Мы обучим классификатор на наборе данных SciCite с помощью оценщика. Давайте настроим input_fns для чтения набора данных в модель

def preprocessed_input_fn(for_eval):
  data = THE_DATASET.get_data(for_eval=for_eval)
  data = data.map(THE_DATASET.example_fn, num_parallel_calls=1)
  return data


def input_fn_train(params):
  data = preprocessed_input_fn(for_eval=False)
  data = data.repeat(None)
  data = data.shuffle(1024)
  data = data.batch(batch_size=params['batch_size'])
  return data


def input_fn_eval(params):
  data = preprocessed_input_fn(for_eval=True)
  data = data.repeat(1)
  data = data.batch(batch_size=params['batch_size'])
  return data


def input_fn_predict(params):
  data = preprocessed_input_fn(for_eval=True)
  data = data.batch(batch_size=params['batch_size'])
  return data

Давайте построим модель, которая использует вложения CORD-19 с классификационным слоем наверху.

def model_fn(features, labels, mode, params):
  # Embed the text
  embed = hub.Module(params['module_name'], trainable=params['trainable_module'])
  embeddings = embed(features['feature'])

  # Add a linear layer on top
  logits = tf.layers.dense(
      embeddings, units=THE_DATASET.num_classes(), activation=None)
  predictions = tf.argmax(input=logits, axis=1)

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(
        mode=mode,
        predictions={
            'logits': logits,
            'predictions': predictions,
            'features': features['feature'],
            'labels': features['label']
        })

  # Set up a multi-class classification head
  loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits)
  loss = tf.reduce_mean(loss)

  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=params['learning_rate'])
    train_op = optimizer.minimize(loss, global_step=tf.train.get_or_create_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  elif mode == tf.estimator.ModeKeys.EVAL:
    accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    precision = tf.metrics.precision(labels=labels, predictions=predictions)
    recall = tf.metrics.recall(labels=labels, predictions=predictions)

    return tf.estimator.EstimatorSpec(
        mode=mode,
        loss=loss,
        eval_metric_ops={
            'accuracy': accuracy,
            'precision': precision,
            'recall': recall,
        })

Гиперпараметры

Обучите и оцените модель

Давайте обучим и оценим модель, чтобы увидеть производительность задачи SciCite.

estimator = tf.estimator.Estimator(functools.partial(model_fn, params=params))
metrics = []

for step in range(0, STEPS, EVAL_EVERY):
  estimator.train(input_fn=functools.partial(input_fn_train, params=params), steps=EVAL_EVERY)
  step_metrics = estimator.evaluate(input_fn=functools.partial(input_fn_eval, params=params))
  print('Global step {}: loss {:.3f}, accuracy {:.3f}'.format(step, step_metrics['loss'], step_metrics['accuracy']))
  metrics.append(step_metrics)
Global step 0: loss 0.796, accuracy 0.670
Global step 200: loss 0.701, accuracy 0.732
Global step 400: loss 0.682, accuracy 0.719
Global step 600: loss 0.650, accuracy 0.747
Global step 800: loss 0.620, accuracy 0.762
Global step 1000: loss 0.609, accuracy 0.762
Global step 1200: loss 0.605, accuracy 0.762
Global step 1400: loss 0.585, accuracy 0.783
Global step 1600: loss 0.586, accuracy 0.768
Global step 1800: loss 0.577, accuracy 0.774
Global step 2000: loss 0.584, accuracy 0.765
Global step 2200: loss 0.565, accuracy 0.778
Global step 2400: loss 0.570, accuracy 0.776
Global step 2600: loss 0.556, accuracy 0.789
Global step 2800: loss 0.563, accuracy 0.778
Global step 3000: loss 0.557, accuracy 0.784
Global step 3200: loss 0.566, accuracy 0.774
Global step 3400: loss 0.552, accuracy 0.782
Global step 3600: loss 0.551, accuracy 0.785
Global step 3800: loss 0.547, accuracy 0.788
Global step 4000: loss 0.549, accuracy 0.784
Global step 4200: loss 0.548, accuracy 0.785
Global step 4400: loss 0.553, accuracy 0.783
Global step 4600: loss 0.543, accuracy 0.786
Global step 4800: loss 0.548, accuracy 0.783
Global step 5000: loss 0.547, accuracy 0.785
Global step 5200: loss 0.539, accuracy 0.791
Global step 5400: loss 0.546, accuracy 0.782
Global step 5600: loss 0.548, accuracy 0.781
Global step 5800: loss 0.540, accuracy 0.791
Global step 6000: loss 0.542, accuracy 0.790
Global step 6200: loss 0.539, accuracy 0.792
Global step 6400: loss 0.545, accuracy 0.788
Global step 6600: loss 0.552, accuracy 0.781
Global step 6800: loss 0.549, accuracy 0.783
Global step 7000: loss 0.540, accuracy 0.788
Global step 7200: loss 0.543, accuracy 0.782
Global step 7400: loss 0.541, accuracy 0.787
Global step 7600: loss 0.532, accuracy 0.790
Global step 7800: loss 0.537, accuracy 0.792
global_steps = [x['global_step'] for x in metrics]
fig, axes = plt.subplots(ncols=2, figsize=(20,8))

for axes_index, metric_names in enumerate([['accuracy', 'precision', 'recall'],
                                            ['loss']]):
  for metric_name in metric_names:
    axes[axes_index].plot(global_steps, [x[metric_name] for x in metrics], label=metric_name)
  axes[axes_index].legend()
  axes[axes_index].set_xlabel("Global Step")

PNG

Мы видим, что потери быстро уменьшаются, в то время как особенно быстро увеличивается точность. Давайте изобразим несколько примеров, чтобы проверить, как прогноз соотносится с истинными метками:

predictions = estimator.predict(functools.partial(input_fn_predict, params))
first_10_predictions = list(itertools.islice(predictions, 10))

display_df(
  pd.DataFrame({
      TEXT_FEATURE_NAME: [pred['features'].decode('utf8') for pred in first_10_predictions],
      LABEL_NAME: [THE_DATASET.class_names()[pred['labels']] for pred in first_10_predictions],
      'prediction': [THE_DATASET.class_names()[pred['predictions']] for pred in first_10_predictions]
  }))

Мы видим, что для этой случайной выборки модель в большинстве случаев предсказывает правильную метку, что указывает на то, что она может довольно хорошо встраивать научные предложения.

Что дальше?

Теперь, когда вы узнали немного больше о встраиваниях CORD-19 Swivel от TF-Hub, мы призываем вас принять участие в конкурсе CORD-19 Kaggle, чтобы внести свой вклад в получение научной информации из академических текстов, связанных с COVID-19.