بهینه سازها در احتمال TensorFlow

مشاهده در TensorFlow.org در Google Colab اجرا شود مشاهده منبع در GitHub دانلود دفترچه یادداشت

خلاصه

در این colab نحوه استفاده از بهینه سازهای مختلف پیاده سازی شده در TensorFlow Probability را نشان می دهیم.

وابستگی ها و پیش نیازها

وارد كردن

بهینه سازهای BFGS و L-BFGS

روش‌های شبه نیوتنی کلاسی از الگوریتم‌های بهینه‌سازی مرتبه اول محبوب هستند. این روش ها از یک تقریب قطعی مثبت به هسین دقیق برای یافتن جهت جستجو استفاده می کنند.

روش بیافجیاس ( BFGS ) یک پیادهسازی خاص از این ایده کلی است. این قابل اجرا است و روش انتخابی برای مشکلات متوسط که در آن شیب پیوسته در همه جا است (به عنوان مثال رگرسیون خطی با است \(L_2\) پنالتی).

L-BFGS یک نسخه محدود حافظه از BFGS است که برای حل مشکلات بزرگتر که ماتریس بلند می توانید در هزینه های معقول محاسبه شود و یا پراکنده مفید است. به جای ذخیره سازی به طور کامل متراکم \(n \times n\) تقریب ماتریس ادم مزدور، آنها تنها چند بردار به طول نجات \(n\) است که نشان دهنده این تقریب به طور ضمنی.

توابع کمکی

L-BFGS در یک تابع درجه دوم ساده

# Fix numpy seed for reproducibility
np.random.seed(12345)

# The objective must be supplied as a function that takes a single
# (Tensor) argument and returns a tuple. The first component of the
# tuple is the value of the objective at the supplied point and the
# second value is the gradient at the supplied point. The value must
# be a scalar and the gradient must have the same shape as the
# supplied argument.

# The `make_val_and_grad_fn` decorator helps transforming a function
# returning the objective value into one that returns both the gradient
# and the value. It also works for both eager and graph mode.

dim = 10
minimum = np.ones([dim])
scales = np.exp(np.random.randn(dim))

@make_val_and_grad_fn
def quadratic(x):
  return tf.reduce_sum(scales * (x - minimum) ** 2, axis=-1)

# The minimization routine also requires you to supply an initial
# starting point for the search. For this example we choose a random
# starting point.
start = np.random.randn(dim)

# Finally an optional argument called tolerance let's you choose the
# stopping point of the search. The tolerance specifies the maximum
# (supremum) norm of the gradient vector at which the algorithm terminates.
# If you don't have a specific need for higher or lower accuracy, leaving
# this parameter unspecified (and hence using the default value of 1e-8)
# should be good enough.
tolerance = 1e-10

@tf.function
def quadratic_with_lbfgs():
  return tfp.optimizer.lbfgs_minimize(
    quadratic,
    initial_position=tf.constant(start),
    tolerance=tolerance)

results = run(quadratic_with_lbfgs)

# The optimization results contain multiple pieces of information. The most
# important fields are: 'converged' and 'position'.
# Converged is a boolean scalar tensor. As the name implies, it indicates
# whether the norm of the gradient at the final point was within tolerance.
# Position is the location of the minimum found. It is important to check
# that converged is True before using the value of the position.

print('L-BFGS Results')
print('Converged:', results.converged)
print('Location of the minimum:', results.position)
print('Number of iterations:', results.num_iterations)
Evaluation took: 0.014586 seconds
L-BFGS Results
Converged: True
Location of the minimum: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Number of iterations: 10

مشکل مشابه با BFGS

@tf.function
def quadratic_with_bfgs():
  return tfp.optimizer.bfgs_minimize(
    quadratic,
    initial_position=tf.constant(start),
    tolerance=tolerance)

results = run(quadratic_with_bfgs)

print('BFGS Results')
print('Converged:', results.converged)
print('Location of the minimum:', results.position)
print('Number of iterations:', results.num_iterations)
Evaluation took: 0.010468 seconds
BFGS Results
Converged: True
Location of the minimum: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
Number of iterations: 10

رگرسیون خطی با مجازات L1: داده های سرطان پروستات

به عنوان مثال از کتاب: عناصر آماری آموزش، داده کاوی، استنتاج، و پیش بینی توسط Trevor HASTIE، رابرت Tibshirani و جروم فریدمن.

توجه داشته باشید که این یک مشکل بهینه سازی با جریمه L1 است.

به دست آوردن مجموعه داده

def cache_or_download_file(cache_dir, url_base, filename):
  """Read a cached file or download it."""
  filepath = os.path.join(cache_dir, filename)
  if tf.io.gfile.exists(filepath):
    return filepath
  if not tf.io.gfile.exists(cache_dir):
    tf.io.gfile.makedirs(cache_dir)
  url = url_base + filename
  print("Downloading {url} to {filepath}.".format(url=url, filepath=filepath))
  urllib.request.urlretrieve(url, filepath)
  return filepath

def get_prostate_dataset(cache_dir=CACHE_DIR):
  """Download the prostate dataset and read as Pandas dataframe."""
  url_base = 'http://web.stanford.edu/~hastie/ElemStatLearn/datasets/'
  return pd.read_csv(
      cache_or_download_file(cache_dir, url_base, 'prostate.data'),
      delim_whitespace=True, index_col=0)

prostate_df = get_prostate_dataset()
Downloading http://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data to /tmp/datasets/prostate.data.

تعریف مشکل

np.random.seed(12345)

feature_names = ['lcavol', 'lweight',   'age',  'lbph', 'svi', 'lcp',   
                 'gleason', 'pgg45']

# Normalize features
scalar = preprocessing.StandardScaler()
prostate_df[feature_names] = pd.DataFrame(
    scalar.fit_transform(
        prostate_df[feature_names].astype('float64')))

# select training set
prostate_df_train = prostate_df[prostate_df.train == 'T'] 

# Select features and labels 
features = prostate_df_train[feature_names]
labels =  prostate_df_train[['lpsa']]

# Create tensors
feat = tf.constant(features.values, dtype=tf.float64)
lab = tf.constant(labels.values, dtype=tf.float64)

dtype = feat.dtype

regularization = 0 # regularization parameter
dim = 8 # number of features

# We pick a random starting point for the search
start = np.random.randn(dim + 1)

def regression_loss(params):
  """Compute loss for linear regression model with L1 penalty

  Args:
    params: A real tensor of shape [dim + 1]. The zeroth component
      is the intercept term and the rest of the components are the
      beta coefficients.

  Returns:
    The mean square error loss including L1 penalty.
  """
  params = tf.squeeze(params)
  intercept, beta  = params[0], params[1:]
  pred = tf.matmul(feat, tf.expand_dims(beta, axis=-1)) + intercept
  mse_loss = tf.reduce_sum(
      tf.cast(
        tf.losses.mean_squared_error(y_true=lab, y_pred=pred), tf.float64))
  l1_penalty = regularization * tf.reduce_sum(tf.abs(beta))
  total_loss = mse_loss + l1_penalty
  return total_loss

حل با L-BFGS

متناسب با استفاده از L-BFGS. اگرچه جریمه L1 ناپیوستگی های مشتق را معرفی می کند، در عمل، L-BFGS هنوز هم به خوبی کار می کند.

@tf.function
def l1_regression_with_lbfgs():
  return tfp.optimizer.lbfgs_minimize(
    make_val_and_grad_fn(regression_loss),
    initial_position=tf.constant(start),
    tolerance=1e-8)

results = run(l1_regression_with_lbfgs)
minimum = results.position
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]

print('L-BFGS Results')
print('Converged:', results.converged)
print('Intercept: Fitted ({})'.format(fitted_intercept))
print('Beta:      Fitted {}'.format(fitted_beta))
Evaluation took: 0.017987 seconds
L-BFGS Results
Converged: True
Intercept: Fitted (2.3879985744556484)
Beta:      Fitted [ 0.68626215  0.28193532 -0.17030254  0.10799274  0.33634988 -0.24888523
  0.11992237  0.08689026]

حل با نلدر مید

روش نلدر مید یکی از مهمترین روش های به حداقل رساندن مشتق است. این بهینه ساز از اطلاعات گرادیان استفاده نمی کند و هیچ فرضی در مورد تفاوت پذیری تابع هدف نمی کند. بنابراین برای توابع هدف غیر هموار، برای مثال مسائل بهینه سازی با جریمه L1 مناسب است.

برای یک مسئله بهینه سازی در \(n\)-ابعاد آن را حفظ مجموعه ای از\(n+1\) راه حل نامزد که دهانه یک سیمپلکس غیر منحط. به طور متوالی سیمپلکس را بر اساس مجموعه ای از حرکات (بازتاب، انبساط، انقباض و انقباض) با استفاده از مقادیر تابع در هر یک از رئوس تغییر می دهد.

# Nelder mead expects an initial_vertex of shape [n + 1, 1].
initial_vertex = tf.expand_dims(tf.constant(start, dtype=dtype), axis=-1)

@tf.function
def l1_regression_with_nelder_mead():
  return tfp.optimizer.nelder_mead_minimize(
      regression_loss,
      initial_vertex=initial_vertex,
      func_tolerance=1e-10,
      position_tolerance=1e-10)

results = run(l1_regression_with_nelder_mead)
minimum = results.position.reshape([-1])
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]

print('Nelder Mead Results')
print('Converged:', results.converged)
print('Intercept: Fitted ({})'.format(fitted_intercept))
print('Beta:      Fitted {}'.format(fitted_beta))
Evaluation took: 0.325643 seconds
Nelder Mead Results
Converged: True
Intercept: Fitted (2.387998456121595)
Beta:      Fitted [ 0.68626266  0.28193456 -0.17030291  0.10799375  0.33635132 -0.24888703
  0.11992244  0.08689023]

رگرسیون لجستیک با پنالتی L2

برای این مثال، ما یک مجموعه داده مصنوعی برای طبقه بندی ایجاد می کنیم و از بهینه ساز L-BFGS برای برازش پارامترها استفاده می کنیم.

np.random.seed(12345)

dim = 5  # The number of features
n_obs = 10000  # The number of observations

betas = np.random.randn(dim)  # The true beta
intercept = np.random.randn()  # The true intercept

features = np.random.randn(n_obs, dim)  # The feature matrix
probs = sp.special.expit(
    np.matmul(features, np.expand_dims(betas, -1)) + intercept)

labels = sp.stats.bernoulli.rvs(probs)  # The true labels

regularization = 0.8
feat = tf.constant(features)
lab = tf.constant(labels, dtype=feat.dtype)

@make_val_and_grad_fn
def negative_log_likelihood(params):
  """Negative log likelihood for logistic model with L2 penalty

  Args:
    params: A real tensor of shape [dim + 1]. The zeroth component
      is the intercept term and the rest of the components are the
      beta coefficients.

  Returns:
    The negative log likelihood plus the penalty term. 
  """
  intercept, beta  = params[0], params[1:]
  logit = tf.matmul(feat, tf.expand_dims(beta, -1)) + intercept
  log_likelihood = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(
      labels=lab, logits=logit))
  l2_penalty = regularization * tf.reduce_sum(beta ** 2)
  total_loss = log_likelihood + l2_penalty
  return total_loss

start = np.random.randn(dim + 1)

@tf.function
def l2_regression_with_lbfgs():
  return tfp.optimizer.lbfgs_minimize(
      negative_log_likelihood,
      initial_position=tf.constant(start),
      tolerance=1e-8)

results = run(l2_regression_with_lbfgs)
minimum = results.position
fitted_intercept = minimum[0]
fitted_beta = minimum[1:]

print('Converged:', results.converged)
print('Intercept: Fitted ({}), Actual ({})'.format(fitted_intercept, intercept))
print('Beta:\n\tFitted {},\n\tActual {}'.format(fitted_beta, betas))
Evaluation took: 0.056751 seconds
Converged: True
Intercept: Fitted (1.4111415084244365), Actual (1.3934058329729904)
Beta:
    Fitted [-0.18016612  0.53121578 -0.56420632 -0.5336374   2.00499675],
    Actual [-0.20470766  0.47894334 -0.51943872 -0.5557303   1.96578057]

پشتیبانی بچینگ

هر دو BFGS و L-BFGS از محاسبات دسته‌ای پشتیبانی می‌کنند، برای مثال برای بهینه‌سازی یک تابع منفرد از نقاط شروع مختلف. یا چند تابع پارامتری از یک نقطه.

تک عملکرد، چندین نقطه شروع

تابع Himmelblau یک مورد تست بهینه سازی استاندارد است. تابع توسط:

\[f(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2\]

این تابع دارای چهار حداقل است که در:

  • (3، 2)،
  • (-2.805118, 3.131312)،
  • (-3.779310، -3.283186)،
  • (3.584428, -1.848126).

همه این حداقل ها ممکن است از نقطه شروع مناسب به دست آیند.

# The function to minimize must take as input a tensor of shape [..., n]. In
# this n=2 is the size of the domain of the input and [...] are batching
# dimensions. The return value must be of shape [...], i.e. a batch of scalars
# with the objective value of the function evaluated at each input point.

@make_val_and_grad_fn
def himmelblau(coord):
  x, y = coord[..., 0], coord[..., 1]
  return (x * x + y - 11) ** 2 + (x + y * y - 7) ** 2

starts = tf.constant([[1, 1],
                      [-2, 2],
                      [-1, -1],
                      [1, -2]], dtype='float64')

# The stopping_condition allows to further specify when should the search stop.
# The default, tfp.optimizer.converged_all, will proceed until all points have
# either converged or failed. There is also a tfp.optimizer.converged_any to
# stop as soon as the first point converges, or all have failed.

@tf.function
def batch_multiple_starts():
  return tfp.optimizer.lbfgs_minimize(
      himmelblau, initial_position=starts,
      stopping_condition=tfp.optimizer.converged_all,
      tolerance=1e-8)

results = run(batch_multiple_starts)
print('Converged:', results.converged)
print('Minima:', results.position)
Evaluation took: 0.019095 seconds
Converged: [ True  True  True  True]
Minima: [[ 3.          2.        ]
 [-2.80511809  3.13131252]
 [-3.77931025 -3.28318599]
 [ 3.58442834 -1.84812653]]

عملکردهای چندگانه

برای اهداف نمایشی، در این مثال ما به طور همزمان تعداد زیادی از کاسه های درجه دوم به طور تصادفی با ابعاد بالا را بهینه می کنیم.

np.random.seed(12345)

dim = 100
batches = 500
minimum = np.random.randn(batches, dim)
scales = np.exp(np.random.randn(batches, dim))

@make_val_and_grad_fn
def quadratic(x):
  return tf.reduce_sum(input_tensor=scales * (x - minimum)**2, axis=-1)

# Make all starting points (1, 1, ..., 1). Note not all starting points need
# to be the same.
start = tf.ones((batches, dim), dtype='float64')

@tf.function
def batch_multiple_functions():
  return tfp.optimizer.lbfgs_minimize(
      quadratic, initial_position=start,
      stopping_condition=tfp.optimizer.converged_all,
      max_iterations=100,
      tolerance=1e-8)

results = run(batch_multiple_functions)
print('All converged:', np.all(results.converged))
print('Largest error:', np.max(results.position - minimum))
Evaluation took: 1.994132 seconds
All converged: True
Largest error: 4.4131473142527966e-08