View source on GitHub |
Metric wraps a set of metric computations.
tfma.metrics.Metric(
create_computations_fn: Callable[..., tfma.metrics.MetricComputations
],
**kwargs
)
This class exists to provide similarity between tfma.metrics.Metric and tf.keras.metics.Metric.
Calling computations creates the metric computations. The parameters passed to init will be combined with the parameters passed to the computations method. This allows some of the parameters (e.g. model_names, output_names, sub_keys) to be set at the time the computations are created instead of when the metric is defined.
Methods
computations
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
@classmethod
from_config( config: Dict[str, Any] ) -> 'Metric'
get_config
get_config() -> Dict[str, Any]
Returns serializable config.