داده های NumPy را بارگیری کنید

مشاهده در TensorFlow.org در Google Colab اجرا شود مشاهده منبع در GitHub دانلود دفترچه یادداشت

این آموزش نمونه ای از بارگیری داده ها از آرایه های NumPy در tf.data.Dataset را ارائه می دهد.

این مثال مجموعه داده MNIST را از یک فایل .npz . بارگیری می کند. با این حال، منبع آرایه های NumPy مهم نیست.

برپایی

import numpy as np
import tensorflow as tf

بارگیری از فایل .npz

DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz'

path = tf.keras.utils.get_file('mnist.npz', DATA_URL)
with np.load(path) as data:
  train_examples = data['x_train']
  train_labels = data['y_train']
  test_examples = data['x_test']
  test_labels = data['y_test']

آرایه های NumPy را با tf.data.Dataset

با فرض اینکه آرایه‌ای از مثال‌ها و آرایه‌ای از برچسب‌ها دارید، دو آرایه را به‌صورت یک تاپل به tf.data.Dataset.from_tensor_slices کنید تا یک tf.data.Dataset ایجاد کنید.

train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))

از مجموعه داده ها استفاده کنید

مجموعه داده ها را مخلوط و دسته بندی کنید

BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 100

train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batch(BATCH_SIZE)

یک مدل بسازید و آموزش دهید

model = tf.keras.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10)
])

model.compile(optimizer=tf.keras.optimizers.RMSprop(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['sparse_categorical_accuracy'])
model.fit(train_dataset, epochs=10)
Epoch 1/10
938/938 [==============================] - 3s 2ms/step - loss: 3.5318 - sparse_categorical_accuracy: 0.8762
Epoch 2/10
938/938 [==============================] - 2s 2ms/step - loss: 0.5408 - sparse_categorical_accuracy: 0.9289
Epoch 3/10
938/938 [==============================] - 2s 2ms/step - loss: 0.3770 - sparse_categorical_accuracy: 0.9473
Epoch 4/10
938/938 [==============================] - 2s 2ms/step - loss: 0.3281 - sparse_categorical_accuracy: 0.9566
Epoch 5/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2940 - sparse_categorical_accuracy: 0.9621
Epoch 6/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2622 - sparse_categorical_accuracy: 0.9657
Epoch 7/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2446 - sparse_categorical_accuracy: 0.9698
Epoch 8/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2147 - sparse_categorical_accuracy: 0.9739
Epoch 9/10
938/938 [==============================] - 2s 2ms/step - loss: 0.1956 - sparse_categorical_accuracy: 0.9750
Epoch 10/10
938/938 [==============================] - 2s 2ms/step - loss: 0.1964 - sparse_categorical_accuracy: 0.9759
<keras.callbacks.History at 0x7fc7a80beb50>
model.evaluate(test_dataset)
157/157 [==============================] - 0s 2ms/step - loss: 0.7089 - sparse_categorical_accuracy: 0.9572
[0.7088937163352966, 0.9571999907493591]