d4rl_mujoco_ant

  • 説明

D4RLは、オフライン強化学習のオープンソースベンチマークです。アルゴリズムのトレーニングとベンチマークのための標準化された環境とデータセットを提供します。

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_ant / v0-エキスパート(デフォルト設定)

  • ダウンロードサイズ131.34 MiB

  • データセットのサイズ464.94 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,288
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-中

  • ダウンロードサイズ131.39 MiB

  • データセットのサイズ464.78 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,122
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-medium-expert

  • ダウンロードサイズ262.73 MiB

  • データセットのサイズ929.71 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,410
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-混合

  • ダウンロードサイズ104.63 MiB

  • データセットのサイズ464.93 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,320
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v0-ランダム

  • ダウンロードサイズ139.50 MiB

  • データセットのサイズ464.97 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,377
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-expert

  • ダウンロードサイズ220.72 MiB

  • データセットのサイズ968.07 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,033
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-中

  • ダウンロードサイズ222.39 MiB

  • データセットのサイズ1023.23 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,179
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-medium-expert

  • ダウンロードサイズ442.25 MiB

  • データセットサイズ1.13 GiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,211
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v1-中程度の再生

  • ダウンロードサイズ132.05 MiB

  • データセットのサイズ175.09 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 485
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(15,), dtype=tf.float64),
            'qvel': Tensor(shape=(14,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_ant / v1-フルリプレイ

  • ダウンロードサイズ437.57 MiB

  • データセットのサイズ579.52 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,319
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(15,), dtype=tf.float64),
            'qvel': Tensor(shape=(14,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_ant / v1-ランダ​​ム

  • ダウンロードサイズ225.18 MiB

  • データセットのサイズ583.49 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 5,741
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-expert

  • ダウンロードサイズ317.69 MiB

  • データセットのサイズ968.83 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,035
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-フルリプレイ

  • ダウンロードサイズ437.57 MiB

  • データセットのサイズ579.52 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,319
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(15,), dtype=tf.float64),
            'qvel': Tensor(shape=(14,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_ant / v2-medium

  • ダウンロードサイズ320.11 MiB

  • データセットサイズ1.01 GiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 1,203
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 111), dtype=tf.float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=tf.float32),
            'weight': Tensor(shape=(256, 256), dtype=tf.float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=tf.float32),
            'weight': Tensor(shape=(8, 256), dtype=tf.float32),
        }),
        'nonlinearity': tf.string,
        'output_distribution': tf.string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-medium-expert

  • ダウンロードサイズ637.02 MiB

  • データセットサイズ1.13 GiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 2,237
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})

d4rl_mujoco_ant / v2-中程度の再生

  • ダウンロードサイズ132.05 MiB

  • データセットのサイズ175.09 MiB

  • オートキャッシュされたドキュメント):時のみshuffle_files=False (電車)

  • スプリット

スプリット
'train' 485
  • 特長
FeaturesDict({
    'algorithm': tf.string,
    'iteration': tf.int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float64),
        'discount': tf.float64,
        'infos': FeaturesDict({
            'action_log_probs': tf.float64,
            'qpos': Tensor(shape=(15,), dtype=tf.float64),
            'qvel': Tensor(shape=(14,), dtype=tf.float64),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float64),
        'reward': tf.float64,
    }),
})

d4rl_mujoco_ant / v2-ランダム

  • ダウンロードサイズ326.67 MiB

  • データセットのサイズ583.57 MiB

  • オートキャッシュされたドキュメント):いいえ

  • スプリット

スプリット
'train' 5,822
  • 特長
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=tf.float32),
        'discount': tf.float32,
        'infos': FeaturesDict({
            'action_log_probs': tf.float32,
            'qpos': Tensor(shape=(15,), dtype=tf.float32),
            'qvel': Tensor(shape=(14,), dtype=tf.float32),
        }),
        'is_first': tf.bool,
        'is_last': tf.bool,
        'is_terminal': tf.bool,
        'observation': Tensor(shape=(111,), dtype=tf.float32),
        'reward': tf.float32,
    }),
})