TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

colorectal_histology

Classification of textures in colorectal cancer histology. Each example is a 150 x 150 x 3 RGB image of one of 8 classes.

Features

FeaturesDict({
    'filename': Text(shape=(), dtype=tf.string),
    'image': Image(shape=(150, 150, 3), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=8),
})

Statistics

Split Examples
ALL 5,000
TRAIN 5,000

Urls

Supervised keys (for as_supervised=True)

(u'image', u'label')

Citation

@article{kather2016multi,
  title={Multi-class texture analysis in colorectal cancer histology},
  author={Kather, Jakob Nikolas and Weis, Cleo-Aron and Bianconi, Francesco and Melchers, Susanne M and Schad, Lothar R and Gaiser, Timo and Marx, Alexander and Z{"o}llner, Frank Gerrit},
  journal={Scientific reports},
  volume={6},
  pages={27988},
  year={2016},
  publisher={Nature Publishing Group}
}