• Description:

Franka performing tabletop pick place tasks

Split Examples
'train' 908
  • Feature structure:
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': Scalar(shape=(), dtype=float32),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'gripper': Scalar(shape=(), dtype=bool),
            'hand_image': Image(shape=(480, 640, 3), dtype=uint8),
            'joint_pos': Tensor(shape=(7,), dtype=float32),
        'reward': Scalar(shape=(), dtype=float32),
  • Feature documentation:
Feature Class Shape Dtype Description
episode_metadata FeaturesDict
episode_metadata/file_path Text string Path to the original data file.
steps Dataset
steps/action Tensor (8,) float32 Robot action, consists of [7 delta joint pos,1x gripper binary state].
steps/discount Scalar float32 Discount if provided, default to 1.
steps/is_first Tensor bool
steps/is_last Tensor bool
steps/is_terminal Tensor bool
steps/language_embedding Tensor (512,) float32 Kona language embedding. See
steps/language_instruction Text string Language Instruction.
steps/observation FeaturesDict
steps/observation/gripper Scalar bool Binary gripper state (1 - closed, 0 - open)
steps/observation/hand_image Image (480, 640, 3) uint8 Hand camera RGB observation.
steps/observation/joint_pos Tensor (7,) float32 xArm joint positions (7 DoF).
steps/reward Scalar float32 Reward if provided, 1 on final step for demos.
  • Citation:
  title={Robot Learning with Sensorimotor Pre-training},
  author={Ilija Radosavovic and Baifeng Shi and Letian Fu and Ken Goldberg and Trevor Darrell and Jitendra Malik},