Join us at TensorFlow World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

gap

GAP is a gender-balanced dataset containing 8,908 coreference-labeled pairs of (ambiguous pronoun, antecedent name), sampled from Wikipedia and released by Google AI Language for the evaluation of coreference resolution in practical applications.

Features

FeaturesDict({
    'A': Text(shape=(), dtype=tf.string),
    'A-coref': Tensor(shape=(), dtype=tf.bool),
    'A-offset': Tensor(shape=(), dtype=tf.int32),
    'B': Text(shape=(), dtype=tf.string),
    'B-coref': Tensor(shape=(), dtype=tf.bool),
    'B-offset': Tensor(shape=(), dtype=tf.int32),
    'ID': Text(shape=(), dtype=tf.string),
    'Pronoun': Text(shape=(), dtype=tf.string),
    'Pronoun-offset': Tensor(shape=(), dtype=tf.int32),
    'Text': Text(shape=(), dtype=tf.string),
    'URL': Text(shape=(), dtype=tf.string),
})

Statistics

Split Examples
ALL 4,454
TRAIN 2,000
TEST 2,000
VALIDATION 454

Urls

Supervised keys (for as_supervised=True)

None

Citation

@article{DBLP:journals/corr/abs-1810-05201,
  author    = {Kellie Webster and
               Marta Recasens and
               Vera Axelrod and
               Jason Baldridge},
  title     = {Mind the {GAP:} {A} Balanced Corpus of Gendered Ambiguous Pronouns},
  journal   = {CoRR},
  volume    = {abs/1810.05201},
  year      = {2018},
  url       = {http://arxiv.org/abs/1810.05201},
  archivePrefix = {arXiv},
  eprint    = {1810.05201},
  timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},
  biburl    = {https://dblp.org/rec/bib/journals/corr/abs-1810-05201},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}