titanic

Dataset describing the survival status of individual passengers on the Titanic. Missing values in the original dataset are represented using ?. Float and int missing values are replaced with -1, string missing values are replaced with 'Unknown'.

Features

FeaturesDict({
    'features': FeaturesDict({
        'age': Tensor(shape=(), dtype=tf.float32),
        'boat': Tensor(shape=(), dtype=tf.string),
        'body': Tensor(shape=(), dtype=tf.int32),
        'cabin': Tensor(shape=(), dtype=tf.string),
        'embarked': ClassLabel(shape=(), dtype=tf.int64, num_classes=4),
        'fare': Tensor(shape=(), dtype=tf.float32),
        'home.dest': Tensor(shape=(), dtype=tf.string),
        'name': Tensor(shape=(), dtype=tf.string),
        'parch': Tensor(shape=(), dtype=tf.int32),
        'pclass': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
        'sex': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
        'sibsp': Tensor(shape=(), dtype=tf.int32),
        'ticket': Tensor(shape=(), dtype=tf.string),
    }),
    'survived': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
})

Statistics

Split Examples
ALL 1,309
TRAIN 1,309

Homepage

Supervised keys (for as_supervised=True)

(u'features', u'survived')

Citation

@ONLINE {titanic,
author = "Frank E. Harrell Jr., Thomas Cason",
title  = "Titanic dataset",
month  = "oct",
year   = "2017",
url    = "https://www.openml.org/d/40945"
}