TF 2.0 is out! Get hands-on practice at TF World, Oct 28-31. Use code TF20 for 20% off select passes. Register now

titanic

Dataset describing the survival status of individual passengers on the Titanic. Missing values in the original dataset are represented using ?. Float and int missing values are replaced with -1, string missing values are replaced with 'Unknown'.

Features

FeaturesDict({
    'features': FeaturesDict({
        'age': Tensor(shape=(), dtype=tf.float32),
        'boat': Tensor(shape=(), dtype=tf.string),
        'body': Tensor(shape=(), dtype=tf.int32),
        'cabin': Tensor(shape=(), dtype=tf.string),
        'embarked': ClassLabel(shape=(), dtype=tf.int64, num_classes=4),
        'fare': Tensor(shape=(), dtype=tf.float32),
        'home.dest': Tensor(shape=(), dtype=tf.string),
        'name': Tensor(shape=(), dtype=tf.string),
        'parch': Tensor(shape=(), dtype=tf.int32),
        'pclass': ClassLabel(shape=(), dtype=tf.int64, num_classes=3),
        'sex': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
        'sibsp': Tensor(shape=(), dtype=tf.int32),
        'ticket': Tensor(shape=(), dtype=tf.string),
    }),
    'survived': ClassLabel(shape=(), dtype=tf.int64, num_classes=2),
})

Statistics

Split Examples
ALL 1,309
TRAIN 1,309

Urls

Supervised keys (for as_supervised=True)

(u'features', u'survived')

Citation

@ONLINE {titanic,
author = "Frank E. Harrell Jr., Thomas Cason",
title  = "Titanic dataset",
month  = "oct",
year   = "2017",
url    = "https://www.openml.org/d/40945"
}