TensorFlow 2.0 RC is available Learn more

wmt18_translate

Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data sources. The base wmt_translate allows you to create your own config to choose your own data/language pair by creating a custom tfds.translate.wmt.WmtConfig.

config = tfds.translate.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        tfds.Split.TRAIN: ["commoncrawl_frde"],
        tfds.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = tfds.builder("wmt_translate", config=config)

wmt18_translate is configured with tfds.translate.wmt18.WmtConfig and has the following configurations predefined (defaults to the first one):

  • cs-en (v0.0.3) (Size: 1.89 GiB): WMT 2018 cs-en translation task dataset.

  • de-en (v0.0.3) (Size: 3.55 GiB): WMT 2018 de-en translation task dataset.

  • et-en (v0.0.3) (Size: 499.91 MiB): WMT 2018 et-en translation task dataset.

  • fi-en (v0.0.3) (Size: 468.76 MiB): WMT 2018 fi-en translation task dataset.

  • kk-en (v0.0.3) (Size: ?? GiB): WMT 2018 kk-en translation task dataset.

  • ru-en (v0.0.3) (Size: 3.91 GiB): WMT 2018 ru-en translation task dataset.

  • tr-en (v0.0.3) (Size: 59.32 MiB): WMT 2018 tr-en translation task dataset.

  • zh-en (v0.0.3) (Size: 2.10 GiB): WMT 2018 zh-en translation task dataset.

wmt18_translate/cs-en

Translation({
    'cs': Text(shape=(), dtype=tf.string),
    'en': Text(shape=(), dtype=tf.string),
})

wmt18_translate/de-en

Translation({
    'de': Text(shape=(), dtype=tf.string),
    'en': Text(shape=(), dtype=tf.string),
})

wmt18_translate/et-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'et': Text(shape=(), dtype=tf.string),
})

wmt18_translate/fi-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'fi': Text(shape=(), dtype=tf.string),
})

wmt18_translate/kk-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'kk': Text(shape=(), dtype=tf.string),
})

wmt18_translate/ru-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'ru': Text(shape=(), dtype=tf.string),
})

wmt18_translate/tr-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'tr': Text(shape=(), dtype=tf.string),
})

wmt18_translate/zh-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'zh': Text(shape=(), dtype=tf.string),
})

Statistics

Split Examples
ALL 25,168,191
TRAIN 25,162,209
TEST 3,981
VALIDATION 2,001

Urls

Supervised keys (for as_supervised=True)

(u'zh', u'en')

Citation

@InProceedings{bojar-EtAl:2018:WMT1,
  author    = {Bojar, Ond
{r}ej  and  Federmann, Christian  and  Fishel, Mark
    and Graham, Yvette  and  Haddow, Barry  and  Huck, Matthias  and
    Koehn, Philipp  and  Monz, Christof},
  title     = {Findings of the 2018 Conference on Machine Translation (WMT18)},
  booktitle = {Proceedings of the Third Conference on Machine Translation,
    Volume 2: Shared Task Papers},
  month     = {October},
  year      = {2018},
  address   = {Belgium, Brussels},
  publisher = {Association for Computational Linguistics},
  pages     = {272--307},
  url       = {http://www.aclweb.org/anthology/W18-6401}
}