TensorFlow 2.0 RC is available Learn more

wmt15_translate

Translate dataset based on the data from statmt.org.

Versions exists for the different years using a combination of multiple data sources. The base wmt_translate allows you to create your own config to choose your own data/language pair by creating a custom tfds.translate.wmt.WmtConfig.

config = tfds.translate.wmt.WmtConfig(
    version="0.0.1",
    language_pair=("fr", "de"),
    subsets={
        tfds.Split.TRAIN: ["commoncrawl_frde"],
        tfds.Split.VALIDATION: ["euelections_dev2019"],
    },
)
builder = tfds.builder("wmt_translate", config=config)

wmt15_translate is configured with tfds.translate.wmt15.WmtConfig and has the following configurations predefined (defaults to the first one):

  • cs-en (v0.0.4) (Size: 1.62 GiB): WMT 2015 cs-en translation task dataset.

  • de-en (v0.0.4) (Size: 1.62 GiB): WMT 2015 de-en translation task dataset.

  • fi-en (v0.0.4) (Size: 260.51 MiB): WMT 2015 fi-en translation task dataset.

  • fr-en (v0.0.4) (Size: 6.24 GiB): WMT 2015 fr-en translation task dataset.

  • ru-en (v0.0.4) (Size: 1.02 GiB): WMT 2015 ru-en translation task dataset.

  • cs-en.subwords8k (v0.0.4) (Size: 1.62 GiB): WMT 2015 cs-en translation task dataset with subword encoding.

  • de-en.subwords8k (v0.0.4) (Size: 1.62 GiB): WMT 2015 de-en translation task dataset with subword encoding.

  • fi-en.subwords8k (v0.0.4) (Size: 260.51 MiB): WMT 2015 fi-en translation task dataset with subword encoding.

  • fr-en.subwords8k (v0.0.4) (Size: 6.24 GiB): WMT 2015 fr-en translation task dataset with subword encoding.

  • ru-en.subwords8k (v0.0.4) (Size: 1.02 GiB): WMT 2015 ru-en translation task dataset with subword encoding.

wmt15_translate/cs-en

Translation({
    'cs': Text(shape=(), dtype=tf.string),
    'en': Text(shape=(), dtype=tf.string),
})

wmt15_translate/de-en

Translation({
    'de': Text(shape=(), dtype=tf.string),
    'en': Text(shape=(), dtype=tf.string),
})

wmt15_translate/fi-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'fi': Text(shape=(), dtype=tf.string),
})

wmt15_translate/fr-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'fr': Text(shape=(), dtype=tf.string),
})

wmt15_translate/ru-en

Translation({
    'en': Text(shape=(), dtype=tf.string),
    'ru': Text(shape=(), dtype=tf.string),
})

wmt15_translate/cs-en.subwords8k

Translation({
    'cs': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8193>),
    'en': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8155>),
})

wmt15_translate/de-en.subwords8k

Translation({
    'de': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8270>),
    'en': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8212>),
})

wmt15_translate/fi-en.subwords8k

Translation({
    'en': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8217>),
    'fi': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8113>),
})

wmt15_translate/fr-en.subwords8k

Translation({
    'en': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8183>),
    'fr': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8133>),
})

wmt15_translate/ru-en.subwords8k

Translation({
    'en': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8194>),
    'ru': Text(shape=(None,), dtype=tf.int64, encoder=<SubwordTextEncoder vocab_size=8180>),
})

Statistics

Split Examples
ALL 2,500,902
TRAIN 2,495,081
VALIDATION 3,003
TEST 2,818

Urls

Supervised keys (for as_supervised=True)

(u'ru', u'en')

Citation

@InProceedings{bojar-EtAl:2015:WMT,
  author    = {Bojar, Ond
{r}ej  and  Chatterjee, Rajen  and  Federmann, Christian  and  Haddow, Barry  and  Huck, Matthias  and  Hokamp, Chris  and  Koehn, Philipp  and  Logacheva, Varvara  and  Monz, Christof  and  Negri, Matteo  and  Post, Matt  and  Scarton, Carolina  and  Specia, Lucia  and  Turchi, Marco},
  title     = {Findings of the 2015 Workshop on Statistical Machine Translation},
  booktitle = {Proceedings of the Tenth Workshop on Statistical Machine Translation},
  month     = {September},
  year      = {2015},
  address   = {Lisbon, Portugal},
  publisher = {Association for Computational Linguistics},
  pages     = {1--46},
  url       = {http://aclweb.org/anthology/W15-3001}
}