- Description:
The dataset contains pairs table-question, and the respective answer. The questions require multi-step reasoning and various data operations such as comparison, aggregation, and arithmetic computation. The tables were randomly selected among Wikipedia tables with at least 8 rows and 5 columns.
(As per the documentation usage notes)
Dev: Mean accuracy over three (not five) splits of the training data. In other words, train on 'split-{1,2,3}-train' and test on 'split-{1,2,3}-dev', respectively, then average the accuracy.
Test: Train on 'train' and test on 'test'.
Additional Documentation: Explore on Papers With Code
Homepage: https://ppasupat.github.io/WikiTableQuestions/#usage-notes
Source code:
tfds.structured.wiki_table_questions.WikiTableQuestions
Versions:
1.0.0
(default): Initial release.
Download size:
65.36 MiB
Dataset size:
237.24 MiB
Auto-cached (documentation): Yes
Splits:
Split | Examples |
---|---|
'split-1-dev' |
2,810 |
'split-1-train' |
11,321 |
'split-2-dev' |
2,838 |
'split-2-train' |
11,312 |
'split-3-dev' |
2,838 |
'split-3-train' |
11,311 |
'test' |
4,344 |
'train' |
14,149 |
- Feature structure:
FeaturesDict({
'input_text': FeaturesDict({
'context': string,
'table': Sequence({
'column_header': string,
'content': string,
'row_number': int16,
}),
}),
'target_text': string,
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
input_text | FeaturesDict | |||
input_text/context | Tensor | string | ||
input_text/table | Sequence | |||
input_text/table/column_header | Tensor | string | ||
input_text/table/content | Tensor | string | ||
input_text/table/row_number | Tensor | int16 | ||
target_text | Tensor | string |
Supervised keys (See
as_supervised
doc):('input_text', 'target_text')
Figure (tfds.show_examples): Not supported.
Examples (tfds.as_dataframe):
- Citation:
@inproceedings{pasupat-liang-2015-compositional,
title = "Compositional Semantic Parsing on Semi-Structured Tables",
author = "Pasupat, Panupong and
Liang, Percy",
booktitle = "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = jul,
year = "2015",
address = "Beijing, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P15-1142",
doi = "10.3115/v1/P15-1142",
pages = "1470--1480",
}